Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of neuroblastoma regression

Key Points

  • Neuroblastomas in younger children have a higher propensity to undergo spontaneous regression than any other human malignancy, but only genetic subtype 1 tumours with numerical chromosome aberrations are prone to spontaneous regression

  • Although spontaneous regression of neuroblastoma is strongly associated with stage 4S disease, mass-screening studies suggest that genetic subtype 1 tumours of any stage in infants <18 months can undergo spontaneous regression

  • The TrkA/NGF pathway might have a major role in causing spontaneous regression, but alternative mechanisms might involve cellular or humoral immune responses, telomere shortening, or epigenetic modifications

  • Inhibition of the TrkA pathway represents the most-promising approach to initiate regression in infants with favourable tumours; other approaches involving immune modulation or epigenetic regulation are being investigated

Abstract

Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic model of neuroblastoma development.
Figure 2: Mechanisms of spontaneous regression.

Similar content being viewed by others

References

  1. Brodeur, G. M. & Maris, J. M. in Principles and Practice of Pediatric Oncology (eds Pizzo, P. A. & Poplack, D. G.) 786–822 (Lippincott, Williams and Wilkins, Philadelphia, 2010).

    Google Scholar 

  2. Maris, J. M., Hogarty, M. D., Bagatell, R. & Cohn, S. L. Neuroblastoma. Lancet 369, 2106–2120 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, M. A. et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol. 28, 2625–2634 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gatta, G. et al. Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5—a population-based study. Lancet Oncol. 15, 35–47 (2014).

    Article  PubMed  Google Scholar 

  5. Kreissman, S. G. et al. Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol. 14, 999–1008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diede, S. J. Spontaneous regression of metastatic cancer: learning from neuroblastoma. Nat. Rev. Cancer 14, 71–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Matthay, K. K. Stage 4S neuroblastoma: what makes it special? J. Clin. Oncol. 16, 2003–2006 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Nakagawara, A. Molecular basis of spontaneous regression of neuroblastoma: role of neurotrophic signals and genetic abnormalities. Hum. Cell 11, 115–124 (1998).

    CAS  PubMed  Google Scholar 

  9. Nickerson, H. J. et al. Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: a Children's Cancer Group study. J. Clin. Oncol. 18, 477–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Pritchard, J. & Hickman, J. A. Why does stage 4s neuroblastoma regress spontaneously? Lancet 344, 869–870 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto, K. et al. Marginal decrease in mortality and marked increase in incidence as a result of neuroblastoma screening at 6 months of age: cohort study in seven prefectures in Japan. J. Clin. Oncol. 20, 1209–1214 (2002).

    Article  PubMed  Google Scholar 

  12. Sawada, T. et al. Mass screening for neuroblastoma in Japan. Pediatr. Hematol. Oncol. 8, 93–109 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Erttmann, R. et al. 10 years' neuroblastoma screening in Europe: preliminary results of a clinical and biological review from the Study Group for Evaluation of Neuroblastoma Screening in Europe (SENSE). Eur. J. Cancer 34, 1391–1397 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Woods, W. G. et al. A population-based study of the usefulness of screening for neuroblastoma. Lancet 348, 1682–1687 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hoehner, J. C., Olsen, L., Sandstedt, B., Kaplan, D. R. & Pahlman, S. Association of neurotrophin receptor expression and differentiation in human neuroblastoma. Am. J. Pathol. 147, 102–113 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haas, D., Ablin, A. R., Miller, C., Zoger, S. & Matthay, K. K. Complete pathologic maturation and regression of stage IVS neuroblastoma without treatment. Cancer 62, 818–825 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Garvin, J. H. Jr, Lack, E. E., Berenberg, W. & Frantz, C. N. Ganglioneuroma presenting with differentiated skeletal metastases. Report of a case. Cancer 54, 357–360 (1984).

    Article  PubMed  Google Scholar 

  19. Shimada, H. et al. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer 86, 349–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Mosse, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shojaei-Brosseau, T. et al. Genetic epidemiology of neuroblastoma: a study of 426 cases at the Institut Gustave-Roussy in France. Pediatr. Blood Cancer 42, 99–105 (2004).

    Article  PubMed  Google Scholar 

  22. Mosse, Y. P. et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am. J. Hum. Genet. 75, 727–730 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maris, J. M. et al. Evidence for a hereditary neuroblastoma predisposition locus at chromosome 16p12–13 Cancer Res. 62, 6651–6658 (2002).

    CAS  PubMed  Google Scholar 

  24. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. George, R. E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Raabe, E. H. et al. Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene 27, 469–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Trochet, D. et al. Germline mutations of the paired-like homeoBox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet. 74, 761–764 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bosse, K. R. et al. Common variation at BARD1 results in the expression of an oncogenic isoform that influences neuroblastoma susceptibility and oncogenicity. Cancer Res. 72, 2068–2078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Capasso, M. et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat. Genet. 41, 718–723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diskin, S. J. et al. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nat. Genet. 44, 1126–1130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nguyen le, B. et al. Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility Loci. PLoS Genet. 7, e1002026 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, K. et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature 469, 216–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, Z. et al. Mdm2 deficiency suppresses MYCN-driven neuroblastoma tumorigenesis in vivo. Neoplasia 11, 753–762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berry, T. et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 22, 117–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heukamp, L. C. et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci. Transl. Med. 4, 141ra91 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Molenaar, J. J. et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat. Genet. 44, 1199–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Mosse, Y. P. et al. Neuroblastomas have distinct genomic DNA profiles that predict clinical phenotype and regional gene expression. Genes Chromosomes Cancer 46, 936–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Schleiermacher, G. et al. Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br. J. Cancer 107, 1418–1422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pugh, T. J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheung, N. K. et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 307, 1062–1071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sausen, M. et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat. Genet. 45, 12–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Santo, E. E. et al. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma. Oncogene 31, 1571–1581 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Benard, J. et al. MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S. Mol. Oncol. 2, 261–271 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Diskin, S. J. et al. Integrative genomic and epigenomic characterization of stage 4S neuroblastoma gene expression [abstract]. Advances in Neuroblastoma Research, POB083 (Cologne, 2014).

    Google Scholar 

  48. Taggart, D. R. et al. Prognostic value of the stage 4S metastatic pattern and tumor biology in patients with metastatic neuroblastoma diagnosed between birth and 18 months of age. J. Clin. Oncol. 29, 4358–4364 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Challis, G. B. & Stam, H. J. The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol. 29, 545–550 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Everson, T. C. Spontaneous regression of cancer. Ann. N.Y. Acad. Sci. 114, 721–735 (1964).

    Article  PubMed  Google Scholar 

  51. Everson, T. C. & Cole, W. H. Spontaneous regression of cancer (W. B. Saunders & Co., Philadelphia, 1966).

    Google Scholar 

  52. Papac, R. J. Spontaneous regression of cancer: possible mechanisms. In Vivo 12, 571–578 (1998).

    CAS  PubMed  Google Scholar 

  53. Beckwith, J. B. & Perrin, E. V. In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am. J. Pathol. 43, 1089–1104 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ikeda, Y., Lister, J., Bouton, J. M. & Buyukpamukcu, M. Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J. Pediatr. Surg. 16, 636–644 (1981).

    Article  CAS  PubMed  Google Scholar 

  55. Turkel, S. B. & Itabashi, H. H. The natural history of neuroblastic cells in the fetal adrenal gland. Am. J. Pathol. 76, 225–244 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. D'Angio, G. J., Evans, A. E. & Koop, C. E. Special pattern of widespread neuroblastoma with a favourable prognosis. Lancet 1, 1046–1049 (1971).

    Article  CAS  PubMed  Google Scholar 

  57. Evans, A. E., D'Angio, G. J. & Randolph, J. A proposed staging for children with neuroblastoma. Children's cancer study group A. Cancer 27, 374–378 (1971).

    Article  CAS  PubMed  Google Scholar 

  58. George, R. E. et al. High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J. Clin. Oncol. 24, 2891–2896 (2006).

    Article  PubMed  Google Scholar 

  59. Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N. Engl. J. Med. 341, 1165–1173 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Brodeur, G. M. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol. 11, 1466–1477 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Brodeur, G. M. et al. International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J. Clin. Oncol. 6, 1874–1881 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Monclair, T. et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J. Clin. Oncol. 27, 298–303 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cozzi, D. A. et al. Long-term follow-up of the “wait and see” approach to localized perinatal adrenal neuroblastoma. World J. Surg. 37, 459–465 (2013).

    Article  PubMed  Google Scholar 

  64. Fisher, J. P. & Tweddle, D. A. Neonatal neuroblastoma. Semin. Fetal Neonatal Med. 17, 207–215 (2012).

    Article  PubMed  Google Scholar 

  65. Kushner, B. H. et al. Survival from locally invasive or widespread neuroblastoma without cytotoxic therapy. J. Clin. Oncol. 14, 373–381 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Lavarino, C. et al. Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma. BMC Cancer 9, 44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu, F. et al. Proteomics-based identification of spontaneous regression-associated proteins in neuroblastoma. J. Pediatr. Surg. 46, 1948–1955 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Knudson, A. G. Jr & Meadows, A. T. Regression of neuroblastoma IV-S: a genetic hypothesis. N. Engl. J. Med. 302, 1254–1256 (1980).

    Article  PubMed  Google Scholar 

  69. van Noesel, M. M. Neuroblastoma stage 4S: a multifocal stem-cell disease of the developing neural crest. Lancet Oncol. 13, 229–230 (2012).

    Article  PubMed  Google Scholar 

  70. Spitz, R. et al. Favorable outcome of triploid neuroblastomas: a contribution to the special oncogenesis of neuroblastoma. Cancer Genet. Cytogenet. 167, 51–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Ambros, P. F. et al. Regression and progression in neuroblastoma. Does genetics predict tumour behaviour? Eur. J. Cancer 31A, 510–515 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. LaBrosse, E. H., Comoy, E., Bohuon, C., Zucker, J. M. & Schweisguth, O. Catecholamine metabolism in neuroblastoma. J. Natl Cancer Inst. 57, 633–638 (1976).

    Article  CAS  PubMed  Google Scholar 

  73. Bessho, F. Comparison of the incidences of neuroblastoma for screened and unscreened cohorts. Acta Paediatr. 88, 404–406 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Schilling, F. H. et al. Neuroblastoma screening at one year of age. N. Engl. J. Med. 346, 1047–1053 (2002).

    Article  PubMed  Google Scholar 

  75. Woods, W. G. et al. Screening of infants and mortality due to neuroblastoma. N. Engl. J. Med. 346, 1041–1046 (2002).

    Article  PubMed  Google Scholar 

  76. Yamamoto, K. et al. Marginal decrease in mortality and marked increase in incidence as a result of neuroblastoma screening at 6 months of age: cohort study in seven prefectures in Japan. J. Clin. Oncol. 20, 1209–1214 (2002).

    Article  PubMed  Google Scholar 

  77. Brodeur, G. M., Ambros, P. F. & Favrot, M. C. Biological aspects of neuroblastoma screening. Med. Ped. Oncol. 31, 394–400 (1998).

    Article  Google Scholar 

  78. Hayashi, Y., Hanada, R. & Yamamoto, K. Biology of neuroblastomas in Japan found by screening. Am. J. Pediatr. Hematol. Oncol. 14, 342–347 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Kaneko, Y. et al. Current urinary mass screening for catecholamine metabolites at 6 months of age may be detecting only a small portion of high-risk neuroblastomas: A chromosome and N-myc amplification study. J. Clin. Oncol. 8, 2005–2013 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Acharya, S. et al. Prenatally diagnosed neuroblastoma. Cancer 80, 304–310 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Ho, P. T. et al. Prenatal detection of neuroblastoma: a ten-year experience from the Dana-Farber Cancer Institute and Children's Hospital. Pediatrics 92, 358–364 (1993).

    CAS  PubMed  Google Scholar 

  82. Saylors, R. L. 3rd, Cohn, S. L., Morgan, E. R. & Brodeur, G. M. Prenatal detection of neuroblastoma by fetal ultrasonography. Am. J. Pediatr. Hematol. Oncol. 16, 356–360 (1994).

    PubMed  Google Scholar 

  83. Ikeda, H. et al. Surgical treatment of neuroblastomas in infants under 12 months of age. J. Pediatr. Surg. 33, 1246–1250 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Hero, B. et al. Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. J. Clin. Oncol. 26, 1504–1510 (2008).

    Article  PubMed  Google Scholar 

  85. Oue, T. et al. Profile of neuroblastoma detected by mass screening, resected after observation without treatment: results of the Wait and See pilot study. J. Pediatr. Surg. 40, 359–363 (2005).

    Article  PubMed  Google Scholar 

  86. Nishihira, H. et al. Natural course of neuroblastoma detected by mass screening: a 5-year prospective study at a single institution. J. Clin. Oncol. 18, 3012–3017 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Nuchtern, J. G. et al. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: a Children's Oncology Group study. Ann. Surg. 256, 573–580 (2012).

    Article  PubMed  Google Scholar 

  88. Brodeur, G. M. et al. Trk receptor expression and inhibition in neuroblastomas. Clin. Cancer Res. 15, 3244–3250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brodeur, G. M. et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J. Neurooncol. 31, 49–55 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Thiele, C. J., Li, Z. & McKee, A. E. On Trk—the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin. Cancer Res. 15, 5962–5967 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kogner, P. et al. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res. 53, 2044–2050 (1993).

    CAS  PubMed  Google Scholar 

  92. Nakagawara, A., Arima, M., Azar, C. G., Scavarda, N. J. & Brodeur, G. M. Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res. 52, 1364–1368 (1992).

    CAS  PubMed  Google Scholar 

  93. Nakagawara, A. et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N. Engl. J. Med. 328, 847–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Stram, D. & Seeger, R. C. Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J. Natl Cancer Inst. 85, 377–384 (1993).

    Article  PubMed  Google Scholar 

  95. Nakagawara, A., Azar, C. G., Scavarda, N. J. & Brodeur, G. M. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol. Cell Biol. 14, 759–767 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Acheson, A. et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374, 450–453 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Jaboin, J., Kim, C. J., Kaplan, D. R. & Thiele, C. J. Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res. 62, 6756–6763 (2002).

    CAS  PubMed  Google Scholar 

  98. Matsumoto, K., Wada, R. K., Yamashiro, J. M., Kaplan, D. R. & Thiele, C. J. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res. 55, 1798–1806 (1995).

    CAS  PubMed  Google Scholar 

  99. Nakamura, K. et al. Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res. 66, 4249–4255 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Goldschneider, D. & Mehlen, P. Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene 29, 1865–1882 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Rabizadeh, S., Ye, X., Wang, J. J. & Bredesen, D. E. Neurotrophin dependence mediated by p75NTR: contrast between rescue by BDNF and NGF. Cell Death Differ. 6, 1222–1227 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Hantzopoulos, P. A., Suri, C., Glass, D. J., Goldfarb, M. P. & Yancopoulos, G. D. The low affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron 13, 187–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Ho, R. et al. The effect of P75 on Trk receptors in neuroblastomas. Cancer Lett. 305, 76–85 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bamji, S. X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140, 911–923 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nakagawara, A. & Brodeur, G. M. Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur. J. Cancer 33, 2050–2053 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Tacconelli, A. et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Tacconelli, A., Farina, A. R., Cappabianca, L., Gulino, A. & Mackay, A. R. Alternative TrkAIII splicing: a potential regulated tumor-promoting switch and therapeutic target in neuroblastoma. Future Oncol. 1, 689–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Kahane, N. & Kalcheim, C. Expression of trkC receptor mRNA during development of the avian nervous system. J. Neurobiol. 25, 571–584 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Pachnis, V., Mankoo, B. & Costantini, F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119, 1005–1017 (1993).

    CAS  PubMed  Google Scholar 

  110. Tsuzuki, T. et al. Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene 10, 191–198 (1995).

    CAS  PubMed  Google Scholar 

  111. Salcedo, R. et al. Immunologic and therapeutic synergy of IL-27 and IL-2: enhancement of T cell sensitization, tumor-specific CTL reactivity and complete regression of disseminated neuroblastoma metastases in the liver and bone marrow. J. Immunol. 182, 4328–4338 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Salcedo, R. et al. IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J. Immunol. 173, 7170–7182 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Antunes, N. L. et al. Antineuronal antibodies in patients with neuroblastoma and paraneoplastic opsoclonus-myoclonus. J. Pediatr. Hematol. Oncol. 22, 315–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Kataoka, Y., Matsumura, T., Yamamoto, S., Sugimoto, T. & Sawada, T. Distinct cytotoxicity against neuroblastoma cells of peripheral blood and tumor-infiltrating lymphocytes from patients with neuroblastoma. Cancer Lett. 73, 11–21 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Valteau, D. et al. T-cell receptor repertoire in neuroblastoma patients. Cancer Res. 56, 362–369 (1996).

    CAS  PubMed  Google Scholar 

  116. Cooper, R. et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: histopathologic features-a report from the Children's Cancer Group. Med. Pediatr. Oncol. 36, 623–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Pranzatelli, M. R. et al. B- and T-cell markers in opsoclonus-myoclonus syndrome: immunophenotyping of CSF lymphocytes. Neurology 62, 1526–1532 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Rudnick, E. et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies-a report from the Children's Cancer Group Study. Med. Pediatr. Oncol. 36, 612–622 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Russo, C., Cohn, S. L., Petruzzi, M. J. & de Alarcon, P. A. Long-term neurologic outcome in children with opsoclonus-myoclonus associated with neuroblastoma: a report from the Pediatric Oncology Group. Med. Pediatr. Oncol. 28, 284–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Raffaghello, L. et al. Multiple defects of the antigen-processing machinery components in human neuroblastoma: immunotherapeutic implications. Oncogene 24, 4634–4644 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Squire, R., Fowler, C. L., Brooks, S. P., Rich, G. A. & Cooney, D. R. The relationship of class I MHC antigen expression to stage IV-S disease and survival in neuroblastoma. J. Pediatr. Surg. 25, 381–386 (1990).

    Article  CAS  PubMed  Google Scholar 

  122. Bin, Q., Johnson, B. D., Schauer, D. W., Casper, J. T. & Orentas, R. J. Production of macrophage migration inhibitory factor by human and murine neuroblastoma. Tumour Biol. 23, 123–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Castriconi, R. et al. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res. 64, 9180–9184 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Raffaghello, L. et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 6, 558–568 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ren, Y. et al. Inhibition of tumor growth and metastasis in vitro and in vivo by targeting macrophage migration inhibitory factor in human neuroblastoma. Oncogene 25, 3501–3508 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Asgharzadeh, S. et al. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J. Clin. Oncol. 30, 3525–3532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Hiyama, E. et al. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat. Med. 1, 249–255 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Samy, M. et al. Loss of the malignant phenotype of human neuroblastoma cells by a catalytically inactive dominant-negative hTERT mutant. Mol. Cancer Ther. 11, 2384–2393 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Brodeur, G. M. Do the ends justify the means? Nat. Med. 1, 203–205 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Krams, M. et al. Full-length telomerase reverse transcriptase messenger RNA is an independent prognostic factor in neuroblastoma. Am. J. Pathol. 162, 1019–1026 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ohali, A. et al. Telomere length is a prognostic factor in neuroblastoma. Cancer 107, 1391–1399 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Streutker, C. J., Thorner, P., Fabricius, N., Weitzman, S. & Zielenska, M. Telomerase activity as a prognostic factor in neuroblastomas. Pediatr. Dev. Pathol. 4, 62–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Astuti, D. et al. RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene 20, 7573–7577 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Takita, J. et al. Absent or reduced expression of the caspase 8 gene occurs frequently in neuroblastoma, but not commonly in Ewing sarcoma or rhabdomyosarcoma. Med. Pediatr. Oncol. 35, 541–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Barbieri, E. et al. Histone chaperone CHAF1A inhibits differentiation and promotes aggressive neuroblastoma. Cancer Res. 74, 765–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Grau, E. et al. Epigenetic alterations in disseminated neuroblastoma tumour cells: influence of TMS1 gene hypermethylation in relapse risk in NB patients. J. Cancer Res. Clin. Oncol. 136, 1415–1421 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Yang, Q. et al. Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin. Cancer Res. 13, 3191–3197 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Decock, A., Ongenaert, M., Vandesompele, J. & Speleman, F. Neuroblastoma epigenetics: from candidate gene approaches to genome-wide screenings. Epigenetics 6, 962–970 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Batora, N. V. et al. Transitioning from genotypes to epigenotypes: why the time has come for medulloblastoma epigenomics. Neuroscience 264, 171–185 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Feinberg, A. P. The epigenetics of cancer etiology. Semin. Cancer Biol. 14, 427–432 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer 4, 143–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Baylin, S. B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2 (Suppl. 1), S4–S11 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Gros, C. et al. DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94, 2280–2296 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. McCabe, M. T. & Creasy, C. L. EZH2 as a potential target in cancer therapy. Epigenomics 6, 341–351 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Evans, A. E. et al. Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB. Med. Ped. Oncol. 36, 181–184 (2001).

    Article  CAS  Google Scholar 

  147. Evans, A. E. et al. Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin. Cancer Res. 5, 3594–3602 (1999).

    CAS  PubMed  Google Scholar 

  148. Ho, R. et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 62, 6462–6466 (2002).

    CAS  PubMed  Google Scholar 

  149. Iyer, R. et al. Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin. Cancer Res. 16, 1478–1485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Minturn, J. E. et al. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother. Pharmacol. 68, 1057–1065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. De Braud, F. G. et al. Phase 1 open label, dose escalation study of RXDX101, an oral pan-trk, ROS1, and ALK inhibitor, in patients with advanced solid tumors with relevant molecular alterations [abstract]. J. Clin. Oncol. 32 (Suppl.), a2502 (2014).

    Article  Google Scholar 

  152. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  153. US National Library of Medicine.ClinicalTrials.gov [online], (2014).

  154. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  155. Hsu, L. L., Evans, A. E. & D'Angio, G. J. Hepatomegaly in neuroblastoma stage 4s: criteria for treatment of the vulnerable neonate. Med. Pediatr. Oncol. 27, 521–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Kushner, B. H., Kramer, K., LaQuaglia, M. P., Modak, S. & Cheung, N. K. Liver involvement in neuroblastoma: the Memorial Sloan-Kettering Experience supports treatment reduction in young patients. Pediatr. Blood Cancer 46, 278–284 (2006).

    Article  PubMed  Google Scholar 

  157. Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Baker, D. L. et al. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N. Engl. J. Med. 363, 1313–1323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yuza, Y., Agawa, M., Matsuzaki, M., Yamada, H. & Urashima, M. Gene and protein expression profiling during differentiation of neuroblastoma cells triggered by 13-cis retinoic acid. J. Pediatr. Hematol. Oncol. 25, 715–720 (2003).

    Article  PubMed  Google Scholar 

  161. Shimada, H. et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 86, 364–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Fouladi, M. et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children's Oncology Group phase I consortium report. J. Clin. Oncol. 28, 3623–3629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Park, J. R. et al. A phase I study of vorinostat in combination with isotretinoin (RA) in patients with refractory/recurrent neuroblastoma (NB): a new approaches to neuroblastoma therapy consortium trial [abstract]. Advances in Neuroblastoma Research, OR070 (Cologne, 2014).

    Google Scholar 

  164. Simoes-Costa, M. & Bronner, M. E. Insights into neural crest development and evolution from genomic analysis. Genome Res. 23, 1069–1080 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Betancur, P., Bronner-Fraser, M. & Sauka-Spengler, T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu. Rev. Cell. Dev. Biol. 26, 581–603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. De Preter, K. et al. Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes. Genome Biol. 7, R84 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tsarovina, K. et al. Essential role of GATA transcription factors in sympathetic neuron development. Development 131, 4775–4786 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Unsicker, K., Huber, K., Schober, A. & Kalcheim, C. Resolved and open issues in chromaffin cell development. Mech. Dev. 130, 324–329 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Pei, D. et al. Distinct neuroblastoma-associated alterations of PHOX2B impair sympathetic neuronal differentiation in zebrafish models. PLoS Genet. 9, e1003533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Shimada, H. et al. Histopathologic prognostic factors in neuroblastic tumors: Definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J. Natl Cancer Inst. 73, 405–413 (1984).

    Article  CAS  PubMed  Google Scholar 

  171. Shimada, H. et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children's Cancer Group. Cancer 92, 2451–2461 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Ambros, I. M. et al. Role of ploidy, chromosome 1p, and Schwann cells in the maturation of neuroblastoma. N. Engl. J. Med. 334, 1505–1511 (1996).

    Article  CAS  PubMed  Google Scholar 

  173. Brodeur, G. M. Schwann cells as antineuroblastoma agents. N. Engl. J. Med. 334, 1537–1539 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants R01-CA094194 and R01-039,771; Alex's Lemonade Stand Foundation; and the Audrey E. Evans endowed chair (G.M.B.).

Author information

Authors and Affiliations

Authors

Contributions

G.M.B. and R.B. researched data and discussed content for article, wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Garrett M. Brodeur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodeur, G., Bagatell, R. Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol 11, 704–713 (2014). https://doi.org/10.1038/nrclinonc.2014.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.168

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer