Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting ALK in neuroblastoma—preclinical and clinical advancements

Abstract

Despite improvements in cancer therapies in the past 50 years, neuroblastoma remains a devastating clinical problem and a leading cause of childhood cancer deaths. Advances in treatments for children with high-risk neuroblastoma have, until recently, involved addition of cytotoxic therapy to dose-intensive regimens. In this era of targeted therapies, substantial efforts have been made to identify optimal targets for different types of cancer. The discovery of hereditary and somatic activating mutations in the oncogene ALK has now placed neuroblastoma among other cancers, such as melanoma and non-small-cell lung cancer (NSCLC), which benefit from therapies with oncogene-specific small-molecule tyrosine kinase inhibitors. Crizotinib, a small-molecule inhibitor of ALK, has transformed the landscape for the treatment of NSCLC harbouring ALK translocations and has demonstrated activity in preclinical models of ALK-driven neuroblastomas. However, inhibition of mutated ALK is complex when compared with translocated ALK and remains a therapeutic challenge. This Review discusses the biology of ALK in the development of neuroblastoma, preclinical and clinical progress with the use of ALK inhibitors and immunotherapy, challenges associated with resistance to such therapies and the steps being taken to overcome some of these hurdles.

Key Points

  • The discovery of germline and somatic mutations in ALK provides the first tractable oncogenic target in neuroblastoma, prompting the initiation of a phase I–II trial of the ALK inhibitor crizotinib

  • ALK is mutated in 8% of all neuroblastoma cases; mutations are distributed across the range of phenotypes and predict for an inferior outcome

  • Full-length ALK is expressed on the surface of neuroblastoma tumours in both the presence and absence of a genetic alteration, suggesting that ALK antibody therapy is relevant in neuroblastoma

  • The F1174L mutation in ALK results in de novo resistance in neuroblastoma and has emerged as a resistance mechanism in ALK-translocated tumours treated with crizotinib

  • Structural and biochemical data suggest that the increase in ATP-binding affinity for the F1174L-mutated ALK can be overcome with higher doses of crizotinib

  • Stratification of patients based on ALK alteration status will likely become an integral part of frontline therapy for patients with high-risk neuroblastoma

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of ALK protein structure and mutations found in neuroblastoma.
Figure 2

Similar content being viewed by others

References

  1. Smith, M. A. et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol. 28, 2625–2634 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216 (2003).

    CAS  PubMed  Google Scholar 

  3. Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Carlsen, N. L. How frequent is spontaneous remission of neuroblastomas? Implications for screening. Br. J. Cancer 61, 441–446 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Everson, T. C. & Cole, W. H. Spontaneous regression of neuroblastoma. 88–163 (W. B. Saunders Co., Philadelphia, 1966).

  6. Yamamoto, K. et al. Spontaneous regression of localized neuroblastoma detected by mass screening. J. Clin. Oncol. 16, 1265–1269 (1998).

    CAS  PubMed  Google Scholar 

  7. Attiyeh, E. F. et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N. Engl. J. Med. 353, 2243–2253 (2005).

    CAS  PubMed  Google Scholar 

  8. Brodeur, G., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).

    CAS  PubMed  Google Scholar 

  9. Schwab, M. et al. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc. Natl Acad. Sci. USA 81, 4940–4944 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N. Engl. J. Med. 341, 1165–1173 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Sidell, N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J. Natl Cancer Inst. 68, 589–596 (1982).

    CAS  PubMed  Google Scholar 

  12. Thiele, C. J., Reynolds, C. P. & Israel, M. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313, 404–406 (1986).

    Google Scholar 

  13. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  14. Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brodeur, G. M. et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J. Neurooncol. 31, 49–55 (1997).

    CAS  PubMed  Google Scholar 

  16. Minturn, J. E. et al. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother. Pharmacol. 68, 1057–1065 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Norris, R. E., Minturn, J. E., Brodeur, G. M., Maris, J. M. & Adamson, P. C. Preclinical evaluation of lestaurtinib (CEP-701) in combination with retinoids for neuroblastoma. Cancer Chemother. Pharmacol. 68, 1469–1475 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Beppu, K., Jaboine, J., Merchant, M. S., Mackall, C. L. & Thiele, C. J. Effect of imatinib mesylate on neuroblastoma tumorigenesis and vascular endothelial growth factor expression. J. Natl Cancer Inst. 96, 46–55 (2004).

    CAS  PubMed  Google Scholar 

  19. Vitali, R. et al. c-Kit is preferentially expressed in MYCN-amplified neuroblastoma and its effect on cell proliferation is inhibited in vitro by STI-571. Int. J. Cancer 106, 147–152 (2003).

    CAS  PubMed  Google Scholar 

  20. Eggert, A. et al. High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin. Cancer Res. 6, 1900–1908 (2000).

    CAS  PubMed  Google Scholar 

  21. Fotsis, T. et al. Down-regulation of endothelial cell growth inhibitors by enhanced MYCN oncogene expression in human neuroblastoma cells. Eur. J. Biochem. 263, 757–764 (1999).

    CAS  PubMed  Google Scholar 

  22. Maris, J. M. et al. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr. Blood Cancer 50, 581–587 (2008).

    PubMed  Google Scholar 

  23. Coffey, D. C. et al. The histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res. 61, 3591–3594 (2001).

    CAS  PubMed  Google Scholar 

  24. Jaboin, J. et al. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. 62, 6108–6115 (2002).

    CAS  PubMed  Google Scholar 

  25. Goldsmith, K. C. & Hogarty, M.D. Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett. 228, 133–141 (2005).

    CAS  PubMed  Google Scholar 

  26. Osajima-Hakomori, Y. et al. Biological role of anaplastic lymphoma kinase in neuroblastoma. Am. J. Pathol. 167, 213–222 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, M. S. et al. The proteomic signature of NPM/ALK reveals deregulation of multiple cellular pathways. Blood 114, 1585–1595 (2009).

    CAS  PubMed  Google Scholar 

  28. Palmer, R. H., Vernersson, E., Grabbe, C. & Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J. 420, 345–361 (2009).

    CAS  PubMed  Google Scholar 

  29. Carpenter, E. L. et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene http://dx.doi.org/10.1038/onc.2011.647.

  30. Iwahara, T. et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14, 439–449 (1997).

    CAS  PubMed  Google Scholar 

  31. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994).

    CAS  PubMed  Google Scholar 

  32. Cheng, M. & Ott, G. R. Anaplastic lymphoma kinase as a therapeutic target in anaplastic large cell lymphoma, non-small cell lung cancer and neuroblastoma. Anticancer Agents Med. Chem. 10, 236–249 (2010).

    CAS  PubMed  Google Scholar 

  33. Sugawara, E. et al. Identification of anaplastic lymphoma kinase fusions in renal cancer: Large-scale immunohistochemical screening by the intercalated antibody-enhanced polymer method. Cancer http://dx.doi.org/10.1002/cncr.27391.

  34. Mosse, Y. P., Wood, A. & Maris, J. M. Inhibition of ALK signaling for cancer therapy. Clin. Cancer Res. 15, 5609–5614 (2009).

    CAS  PubMed  Google Scholar 

  35. Wang, Y. W. et al. Identification of oncogenic point mutations and hyperphosphorylation of anaplastic lymphoma kinase in lung cancer. Neoplasia 13, 704–715 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Murugan, A. K. & Xing, M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 71, 4403–4411 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grzelinski, M. et al. Enhanced antitumorigenic effects in glioblastoma on double targeting of pleiotrophin and its receptor ALK. Neoplasia 11, 145–156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. van Gaal, J. C. et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. J. Clin. Oncol. 30, 308–315 (2012).

    CAS  PubMed  Google Scholar 

  39. Englund, C. et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425, 512–516 (2003).

    CAS  PubMed  Google Scholar 

  40. Mathivet, T., Mazot, P. & Vigny, M. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)? Cell Signal. 19, 2434–2443 (2007).

    CAS  PubMed  Google Scholar 

  41. Stoica, G. E. et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J. Biol. Chem. 276, 16772–16779 (2001).

    CAS  PubMed  Google Scholar 

  42. Stoica, G. E. et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem. 277, 35990–35998 (2002).

    CAS  PubMed  Google Scholar 

  43. Bai, R. Y. et al. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96, 4319–4327 (2000).

    CAS  PubMed  Google Scholar 

  44. Chiarle, R. et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 11, 623–629 (2005).

    CAS  PubMed  Google Scholar 

  45. Kasprzycka, M., Marzec, M., Liu, X., Zhang, Q. & Wasik, M. A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl Acad. Sci. USA 103, 9964–9969 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007).

    CAS  PubMed  Google Scholar 

  47. Bresler, S. C. et al. Differential inhibitor sensitivity of anaplastic lymphoma kinase variants found in neuroblastoma. Sci. Transl. Med. 3, 108ra114 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. Hallberg, B. & Palmer, R. H. ALK and NSCLC: Targeted therapy with ALK inhibitors. F1000 Med. Rep. 3, 21 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Kwak, E. L. et al. naplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sasaki, T., Rodig, S. J., Chirieac, L. R. & Janne, P. A. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur. J. Cancer 46, 1773–1780 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Knudson, A. G. Jr & Strong, L. C. Mutation and cancer: neuroblastoma and pheochromocytoma. Am. J. Hum. Genet. 24, 514–532 (1972).

    PubMed  PubMed Central  Google Scholar 

  52. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    CAS  PubMed  Google Scholar 

  53. Mosse, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Caren, H., Abel, F., Kogner, P. & Martinsson, T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem. J. 416, 153–159 (2008).

    CAS  PubMed  Google Scholar 

  55. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    CAS  PubMed  Google Scholar 

  56. George, R. E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    CAS  PubMed  Google Scholar 

  58. McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008).

    CAS  PubMed  Google Scholar 

  59. Tabori, U. & Malkin, D. Risk stratification in cancer predisposition syndromes: lessons learned from novel molecular developments in Li-Fraumeni syndrome. Cancer Res. 68, 2053–2057 (2008).

    CAS  PubMed  Google Scholar 

  60. Lamant, L. et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am. J. Pathol. 156, 1711–1721 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dirks, W. G. et al. Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int. J. Cancer 100, 49–56 (2002).

    CAS  PubMed  Google Scholar 

  62. George, R. et al. Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS ONE 2, e255 (2007).

    PubMed  PubMed Central  Google Scholar 

  63. Bossi, R. T. et al. Crystal structures of anaplastic lymphoma kinase in complex with ATP competitive inhibitors. Biochemistry 49, 6813–6825 (2010).

    CAS  PubMed  Google Scholar 

  64. Lee, C. C. et al. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Biochem. J. 430, 425–437 (2010).

    CAS  PubMed  Google Scholar 

  65. Sasaki, T. et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 70, 10038–10043 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Weiser, D. et al. Stratification of patients with neuroblastoma for targeted ALK inhibitor therapy. J. Clin. Oncol. 29 (Suppl. 15), 9514 (2011).

    Google Scholar 

  67. De Brouwer, S. et al. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin. Cancer Res. 16, 4353–4362 (2010).

    CAS  PubMed  Google Scholar 

  68. Schonherr, C. et al. Activating ALK mutations found in neuroblastoma are inhibited by crizotinib and NVP-TAE684. Biochem. J. 440, 405–413 (2011).

    PubMed  Google Scholar 

  69. Schonherr, C. et al. The neuroblastoma ALK(I1250T) mutation is a kinase-dead RTK in vitro and in vivo. Transl. Oncol. 4, 258–265 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schulte, J. H. et al. High ALK receptor tyrosine kinase expression supersedes ALK mutation as a determining factor of an unfavorable phenotype in primary neuroblastoma. Clin. Cancer Res. 17, 5082–5092 (2011).

    CAS  PubMed  Google Scholar 

  72. Passoni, L. et al. Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res. 69, 7338–7346 (2009).

    CAS  PubMed  Google Scholar 

  73. Duijkers, F. A. et al. Anaplastic lymphoma kinase (ALK) inhibitor response in neuroblastoma is highly correlated with ALK mutation status, ALK mRNA and protein levels. Cell. Oncol. 34, 409–417 (2011).

    CAS  Google Scholar 

  74. Cancer Target Discovery and Development Network et al. Towards patient-based cancer therapeutics. Nat. Biotechnol. 28, 904–906 (2010).

  75. Galkin, A. V. et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc. Natl Acad. Sci. USA 104, 270–275 (2007).

    CAS  PubMed  Google Scholar 

  76. Christensen, J. G. et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol. Cancer Ther. 6, 3314–3322 (2007).

    CAS  PubMed  Google Scholar 

  77. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  78. Skolnik, J. M., Barrett, J. S., Jayaraman, B., Patel, D. & Adamson, P. C. Shortening the timeline of pediatric phase I trials: the rolling six design. J. Clin. Oncol. 26, 190–195 (2008).

    PubMed  Google Scholar 

  79. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Engelman, J. A. & Settleman, J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr. Opin. Genet. Dev. 18, 73–79 (2008).

    CAS  PubMed  Google Scholar 

  82. Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2, 51ra70 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Carpenter, E. L. et al. Mechanisms of resistance to small molecule inhibition of anaplastic lymphoma kinase in human neuroblastoma. Presented at the 102nd American Association for Cancer Research Conference.

  84. Moog-Lutz, C. et al. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin. J. Biol. Chem. 280, 26039–26048 (2005).

    CAS  PubMed  Google Scholar 

  85. Baselga, J. et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744 (1996).

    CAS  PubMed  Google Scholar 

  86. Robert, F. et al. Phase I study of anti--epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J. Clin. Oncol. 19, 3234–3243 (2001).

    CAS  PubMed  Google Scholar 

  87. Regales, L. et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J. Clin. Invest. 119, 3000–3010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Scaltriti, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28, 803–814 (2009).

    CAS  PubMed  Google Scholar 

  89. Xia, W. et al. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 24, 6213–6221 (2005).

    CAS  PubMed  Google Scholar 

  90. Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Faisal, A. et al. The aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo. Mol. Cancer Ther. 10, 2115–2123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Terrile, M. et al. miRNA expression profiling of the murine TH-MYCN neuroblastoma model reveals similarities with human tumors and identifies novel candidate miRNAs. PLoS ONE 6, e28356 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chayka, O. et al. Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas. J. Natl Cancer Inst. 101, 663–677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Teitz, T. et al. Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS ONE 6, e19133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chesler, L. et al. Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia 10, 1268–74 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hogarty, M. D. et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res. 68, 9735–9745 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chesler, L. et al. Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. Cancer Res. 67, 9435–9442 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cheng, A. J. et al. Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma. Eur. J. Cancer 43, 1467–1475 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Burkhart, C. A. et al. Effects of MYCN antisense oligonucleotide administration on tumorigenesis in a murine model of neuroblastoma. J. Natl Cancer Inst. 95, 1394–1403 (2003).

    PubMed  Google Scholar 

  100. Chanthery, Y. H. et al. Paracrine signaling through MYCN enhances tumor-vascular interactions in neuroblastoma. Sci. Transl. Med. 4, 115ra3 (2012).

    PubMed  PubMed Central  Google Scholar 

  101. Chesler, L. & Weiss, W. A. Genetically engineered murine models--contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Semin. Cancer Biol. 21, 245–255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Etchin, J., Kanki, J. P. & Look, A. T. Zebrafish as a model for the study of human cancer. Methods Cell Biol. 105, 309–337 (2011).

    CAS  PubMed  Google Scholar 

  103. Ozanne, B., Richards, C. S., Hendler, F., Burns, D. & Gusterson, B. Over-expression of the EGF receptor is a hallmark of squamous cell carcinomas. J. Pathol. 149, 9–14 (1986).

    CAS  PubMed  Google Scholar 

  104. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  PubMed  Google Scholar 

  105. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    CAS  PubMed  Google Scholar 

  106. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  Google Scholar 

  108. Han, S. W. et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J. Clin. Oncol. 23, 2493–2501 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by grants from the National Institute of Health (R01-CA140198), the Children's Oncology Group, the Carly Hillman Fund and the US Army Peer-Reviewed Medical Research Program (W81XWH-10-1-0212/3) granted to Y. P. Mossé.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to researching data for the article, discussion of content, and to writing, revising and editing the manuscript before submission.

Corresponding author

Correspondence to Yael P. Mossé.

Ethics declarations

Competing interests

Y. P. Mossé declares that she has received research funding from Pfizer. E. L. Carpenter declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, E., Mossé, Y. Targeting ALK in neuroblastoma—preclinical and clinical advancements. Nat Rev Clin Oncol 9, 391–399 (2012). https://doi.org/10.1038/nrclinonc.2012.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.72

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer