Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family

Abstract

Holt-Oram syndrome is a developmental disorder affecting the heart and upper limb, the gene for which was mapped to chromosome 12 two years ago. We have now identified a gene for this disorder (HOS1). The gene (TBX5) is a member of the Brachyury (T) family corresponding to the mouse TbxS gene. We have identified six mutations, three in HOS families and three in sporadic HOS cases. Each of the mutations introduces a premature stop codon in the TBXS gene product. Tissue in situ hybridization studies on human embryos from days 26 to 52 of gestation reveal expression of TBXS in heart and limb, consistent with a role in human embryonic development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilkie, A.O.M. et al. Apert syndrome results from localized mutations of FGF2 and is allelic with Crouzon syndrome. Nature Genet. 9, 165–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Reardon, W. et al. Mutations in the fibroblast growth-factor receptor-2 gene cause Crouzon syndrome. Nature Genet. 8, 95–97 (1994).

    Article  Google Scholar 

  3. Bellus, G.A. et al. Identical mutations in three different fibroblast growth factor genes in autosomal dominant craniosynostosis syndrome. Nature Genet. 14, 174–176, (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Dixon, J. et al. Positional cloning of a gene involved in the pathogenesis of Treacher-Collins syndrome. Nature Genet. 12, 130–136 (1996).

    Article  Google Scholar 

  5. Belloni, E. et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genet. 14, 353–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Roessler, E. et al. Mutations in the human Sonic hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Baldwin, C.T., Hoth, C.F., Amos, J.A., da-Silva, E.O. & Milunsky, A. An exonic mutation in the HuP2paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Ton, C.C.T. et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Muragaki, Y., Mundlos, S., Upton, J. & Olsen, B.R. Altered growth and branching pattern in synpolydactyly caused by mutations in HoxD13. Science 272, 548–550 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Gibbons, R.J., Picketts, D.J., Villard, L. & Higgs, D.R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with a-thalassemia (ATR-X syndrome). Cell 80, 837–846 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Pasteris, N.G. et al. Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene : a putative Rho/Rac guanine nucleotide exchange factor. Cell. 79, 669–678 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Foster, J.W. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Vortkamp, A., Gessler, M. & Grezschik, K.H. Gli3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Wolpert, L. Do we understand development? Science 266, 571–572 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, R.L., Riddle, R.D. & Tabin, C. Mechanisms of limb patterning. Curr. Opin. Genet. Dev. 4, 535–542 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Cohn, M.J. & Tickle, C .Limbs: a model for pattern formation within the vertebrate body plan. Trends Genet. 12, 253–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Tickle, C. Vertebrate limb development. Curr. Opin. Genet. Dev. 5, 478–484 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Tabin, C. The initiation of the limb bud: growth factors, Hox genes and retinoids. Cell 80, 671–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Olsen, E.N. & Srivastava, D. Molecular pathways controlling heart development. Science 272, 671–676 (1996).

    Article  Google Scholar 

  21. Burn, J. & Goodship, J. Developmental genetics of the heart. Curr. Opin. Genet. Dev. 6, 322–326 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lyons, G.E. Vertebrate heart development. Curr. Opin. Genet. Dev. 6, 454–460(1996).

    Article  CAS  PubMed  Google Scholar 

  23. Holt, M. & Oram, S. Familial heart disease with skeletal malformations. Br. Heart J. 22, 236–242 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hurst, J.A., Hall, C.M. & Baraitser, M., The Holt-Oram syndrome. J. Med. Genet. 28, 406–410 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Temtamy, S. & McKusick, V. The genetics of hand malformations. Birth Defects 14, 241–244 (1978).

    Google Scholar 

  26. Silengo, M.C., Biagioli, M., Guala, A., Lopez-Bell, G. & Lala, R. Heart-hand syndrome II: a report of Tabatznik syndrome with new findings. Clin. Genet. 38, 105–113 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz de la Fuente, S. & Prieto, F. Heart-hand syndrome III: a new syndrome in three generations. Hum. Genet. 55, 43–47 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Newbury-Ecob, R., Leanage, R., Raeburn, J.A. & Young, I.D., The Holt-Oram syndrome: a clinical genetic study. J. Med. Genet. 33, 300–307 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Terrett, J.A. et al. Holt-Oram syndrome is a genetically heterogeneous disease with one locus mapping to human chromosome 12q. Nature Genet. 6, 401–404 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Bonnet, D. et al. A gene for Holt-Oram syndrome maps to the distal long arm of chromosome 12. Nature Genet. 6, 405–408 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Basson, C.T. et al. The clinical and genetic spectrum of the Holt-Oram syndrome(heart-hand syndrome I). New Engl. J. Med. 330, 885–891 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Terrett, J.A. et al. A translocation at 12q2 refines the interval containing theHolt-Oram syndrome 1 gene. Am. J. Hum. Genet. 59, 1337–1342 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Swaroop, A. & Xu, J. cDNA libraries from human tissues and cell lines. Cytogenet. Cell Genet. 64, 292–294 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Kozak, M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887–903 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Willison, K. The mouse Brachyury and mesoderm formation. Trends Genet. 6, 104–105 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Herrmann, B.G. & Kispert, A. The T genes in embryogenesis. Trends Genet. 10, 280–286 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Herrmann, B.C., Labeit, S., Poustka, A., King, T.R. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Kispert, A., Koschorz, B. & Herrman, B.G. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J. 14, 4763–4772 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Edwards, Y.H. et al. The human homologueTof the mouse T(Brachyury) gene: gene structure, cDNA sequence and assignment to chromosome 6q27. Genome Res. 6, 226–233 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Smith, J.C., Price, B.M.J., Green, J.B.A., Weigel, D. & Herrmann, B.G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Halpern, M.E., Ho, R.K., Walker, C. & Kimmel, C.B. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Schulte-Merker, S., van Eeden, F.J.M., Halpern, M.E, & NŸsslein-Volhard, C no tail(ntl) is the zebrafish homolog of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1995).

    Google Scholar 

  43. Pflugfelder, G.O. et al. The lethal(l)optomotor-blind gene locus in Drosophila melanogaster is a major orgnaizer of optic lobe development : isolation and characterization of the gene. Proc. Natl. Acad. Sci. USA. 89, 1199–1203 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pflugfelder, G.O. et al. Genetic and molecular characterization of the optomotor-blind gene locus in Drosophila melanogaster . Genetics 126, 91–104 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pflugfelder, G.O., Roth, H. & Poeck, B. A homology domain shared between Drosophila optomotor-blind and mouse Brachyury is involved in DNA binding. Biochem. Biophy. Res. Com. 186, 918–925 (1992).

    Article  CAS  Google Scholar 

  46. Bollag, R.J. et al. An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nature Genet. 7, 383–389 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Agulnik, S.I., Bollag, R.J. & Silver, L.M. Conservation of the T-box gene family from Mus musculus to Caenorhaditis elegans . Genomics 25, 214–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Agulnik, S.I. et al. Evolution of mouse T-box genes by tandem duplication and cluster dispersion. Genetics 144, 249–254 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gibson-Brown, J.J. et al. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech. Dev. 56, 93–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Morrison, K. et al. Genetic mapping of the human homologue(T) of mouse T(Brachyury) and a search for allele association between human T and spina bif ida. Hum. Mol. Genet. 5, 669–674 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Bulfone, A. et al. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral-cortex. Neuron. 15, 63–78(1995).

    Article  CAS  PubMed  Google Scholar 

  52. Campbell, C., Goodrich, K., Casey, G. & Beatty, B. Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with the Drosophila omb gene. Genomics 28, 255–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Law, D.J., Gebuhr, T., Garvey, N., Agulnik, S.I. & Silver, L.M., Identification, characterization, and localization to chromosome 17q21–22 of the human TBX-2 homolog, member of a conserved developmental gene family. Mamm. Genome 6, 793–797 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Kispert, A. & Herrman, B.G., The Brachyury gene encodes a novel DNA binding protein. EMBO Journal 12, 3211–3220 (1993).

    Article  CAS  Google Scholar 

  55. Südbeck, P., Schmitz, M.L., Baeuerle, P.A. & Scherer, G. Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nature Genet. 13, 230–232 (1996).

    Article  PubMed  Google Scholar 

  56. Larsen, W.J. Human Embryology, 479 (Churchill Livingstone, New York, 1993).

  57. Chapman, D.L. et al. Expression of the T-box family genes, TbxI-TbxS, during early mouse development. Dev. Dyn. 206, 379–390 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Francis, P.H., Richardson, M.K., Brickell, P.M. & Tickle, C. Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing limb bud. Development 120, 209–218 (1994).

    CAS  PubMed  Google Scholar 

  59. Winnier, G., Blessing, M., Labosky, P.A. & Hogan, B.L.M. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Grimm, S. & Pflugfelder, G.O. Control of the optomotor -blind in Drosophila wing development by decapentaplegic and wingless. Science 271, 1601–1604 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Jamieson, C.R. et al. Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nature Genet. 8, 357–360 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Bamshad, M. et al. A gene for ulnar-mammary syndrome maps to 12q23–24.1. Hum. Mol. Genet 4, 1973–1977 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Friedman, W.F. Congenital heart diseases. in infancy and childhood, in Heart Disease: A Textbook of Cardiovascular Medicine Vol. 2 (ed. Braunwald, E.) 865–887 WB Saunders, Philadelphia, (1992).

    Google Scholar 

  64. Pyeritz, R.E. Genetics and cardiovascular disease. in Heart Disease: A Textbook of Cardiovascular Medicine Vol. 2 (ed. Braunwald, E.) 1622–1655 WB Saunders, Philadelphia. (1992).

    Google Scholar 

  65. Cohen, D., Chumakov, I. & Wessenbach, J. A 1st-generation physical map of the human genome. Nature 366, 698–701 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. loannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DMA fragments. Nature Genet. 6, 84–89 (1994).

    Article  Google Scholar 

  67. Stottler, C.J. et al. Transcription and physical mapping of human chromosome 12. Am. J. Hum. Genet 57 Suppl. A56 (1995).

  68. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: A laboratory manual, (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  69. Sherman, F. Getting started with yeast. Methods Enzymol. 194, 3–21 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Li, Q.Y., Wang, J.S. & Fang, Z.D. Modified method for large scale isolation of Ti plasmid. Chinese J. Plant Path. 18, 225–227 (1988).

    Google Scholar 

  71. Gyapay, G. et al. The 1993-1994 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Armour, J.A.L., Neumann, R., Gobert, S. & Jeffreys, A.J. Isolation of humansimple repeat loci by hybridization selection. Hum. Mol. Genet. 3, 599–605 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Nelson, D.L. et al. Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl. Acad. Sci. USA 86, 6686–6690 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Riley, J. et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucl. Acids Res. 18, 2887–2890 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Verma, R.S. & Babu, A. Human chromosomes: manual of basic techniques. (Pergamon, New York, 1989).

  76. Driesen, M.S. et al. Generation and fluorescent in situ hybridization mapping of yeast artificial chromosomes of 1p, 17p, 17q, and 19q from a hybrid cell-line by high density screening of an amplified library. Genomics 11, 1079–1087 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specificity activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  78. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Q.Y., Lennon, G.G. & Brook, J.D. The identification of exons from theMED/PSACH region of human chromosome 19. Genomics 32, 218–224 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Soothill, P.W. & Rodeck, C.H. First-trimester fetal necroscopy after ultrasound guided aspiration. Lancet 343, 1096–1097 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. el-Refaey, H., Rajasekar, D., Abdalla, M., Calder, L. & Templeton, A. Induction of abortion with mifepristome (RU489) and oral or vaginal misoprostol. NewEngl. J. Med. 332, 983–987 (1995).

    Article  CAS  Google Scholar 

  82. Moorman, A.F.M., de Boor,, P . A.J., Vermeulen,, J.L. & Lamers,, W.H. Practicalaspects of radio-isotopic in situ hybridization on RNA. Histochemical J. 25, 251–266 (1993).

    Article  CAS  Google Scholar 

  83. Notenboom, R.G.E., de Boer,, P . A.J., Moorman,, A.F.M. & Lamers,, W.H. Theestablishment of the hepatic architecture is a prerequisite for the development of a lobular pattern of gene-expression. Development. 122, 321–332 (1996).

    CAS  PubMed  Google Scholar 

  84. Warren, W. Detection of mutations by single-strand conformationpolymorphism analysis. in Current Protocols in Human Genetics Vol. 2 (eds Dracopoli, N.C. et al.) 7.4.1–7.4.6. John Wiley, New York, (1995).

    Google Scholar 

  85. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thierfelder, L. Mutations detection by cycle sequencing. in Current Protocols in Human Genetics Vol. 2 (eds Dracopoli, N.C. et al.) 7.7.1–7.7.6. (John Wiley, New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Brook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi Li, Q., Newbury-Ecob, R., Terrett, J. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15, 21–29 (1997). https://doi.org/10.1038/ng0197-21

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0197-21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing