Skip to main content

Advertisement

Log in

Genetics of pediatric renal tumors

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Wilms tumor (WT) accounts for approximately 95 % of all pediatric renal tumors, with a peak incidence between 2 and 3 years of age. It occurs in sporadic and congenital forms, the latter often occurring before 1 year of age. Incidence declines with age, and WT rarely is observed in adults. WT is an embryonal tumor of the kidney caused by aberrant proliferation of early metanephric kidney cells. It can arise from more than one developmental error and therefore several subtypes can be defined. WT1, a zinc-finger transcription factor, was identified as the first WT gene. Other genes frequently altered somatically in subsets of WT are CTNNB1 and WTX; both genes influence the Wnt signalling pathway. Imprinting alterations of genes in 11p15 are also observed in a subset of WTs. Other pediatric renal tumors occur less often, e.g. malignant rhabdoid tumor of the kidney, clear-cell sarcoma, desmoplastic small-round-cell tumors, congenital mesoblastic nephroma, renal cell carcinoma of childhood, renal primitive neuroectodermal tumors, renal medullary carcinoma, and synovial sarcoma of the kidney. In most of these, characteristic genetic alterations have been identified that help in the unequivocal diagnosis of these childhood renal cancers that are often difficult to distinguish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Knudson AG (1971) Mutation and Cancer: Statistical Study of Retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  2. Maiti S, Alam R, Amos CI, Huff V (2000) Frequent association of β-catenin and WT1 mutations in Wilms tumors. Cancer Res 60:6288–6292

    PubMed  CAS  Google Scholar 

  3. Royer-Pokora B, Weirich A, Schumacher V, Uschkereit C, Beier M, Leuschner I, Graf N, Autschbach F, Schneider D, von Harrach M (2008) Clinical Relevance of Mutations in the Wilms Tumor Suppressor 1 Gene WT1 and the Cadherin-associated Protein β1 Gene CTNNB1 for Patients with Wilms Tumors. Cancer 113:1080–1089

    Article  PubMed  Google Scholar 

  4. Breslow NE, Beckwith JB, Perlman EJ, Reeve AE (2006) Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatr Bood Cancer 47:260–267

    Article  Google Scholar 

  5. Schumacher V, Schneider S, Figge A, Wildhardt G, Harms D, Schmidt D, Weirich A, Ludwig R, Royer-Pokora B (1997) Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc Natl Acad Sci USA 94:3972–3977

    Article  PubMed  CAS  Google Scholar 

  6. Shibata R, Hashigushi A, Sakamoto J, Yamada T, Umezawa A, Hata J (2002) Correlation between a specific Wilms tumours suppressor gene (WT1) mutation and the histological findings in Wilms tumour (WT). J Med Genet 39:e83

    Article  PubMed  CAS  Google Scholar 

  7. Royer-Pokora B, Beier M, Henzler M, Alam R, Schumacher V, Weirich A, Huff V (2004) Twenty-four new cases of WT1 germ line mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet Part A 127A:249–257

    Article  PubMed  Google Scholar 

  8. Little SE, Hanks SP, King-Underwood L, Jones C, Rapley EA, Rahman N, Pritchard-Jones K (2004) Frequency and heritability of WT1 mutations in nonsyndromic Wilms tumor patients: a UK Children’s Cancer Study Group Study. J Clin Oncol 22:4140–4146

    Article  PubMed  CAS  Google Scholar 

  9. Uschkereit C, Perez N, de Torres C, Küff M, Mora J, Royer-Pokora B (2007) Different CTNNB1 mutations as molecular genetic proof for the independent origin of four Wilms tumours in a patient with a novel germ line WT1 mutation. J Med Genet 44:393–396

    Article  PubMed  CAS  Google Scholar 

  10. Weksberg R, Shuman C, Smith AC (2005) Beckwith-Wiedemann syndrome. Am J Med Genet Part C 137C:12–23

    Article  PubMed  Google Scholar 

  11. Onyango P, Feinberg AP (2011) A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript. Proc Natl Acad Sci USA 108:16759–16764

    Article  PubMed  CAS  Google Scholar 

  12. Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, Stewart J, Strong LC, Behringer RR, Huff V (2011) Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest 121:174–183

    Article  PubMed  CAS  Google Scholar 

  13. Beckwith JB, Kiviat NB, Bonadio JF (1990) Nephrogenic rests, nephroblasto-matosis, and the pathogenesis of Wilms tumor. Pediatr Pathol 10:1–36

    Article  PubMed  CAS  Google Scholar 

  14. Fukuzawa R, Reeve AE (2007) Molecular pathology and epidemiology of nephrogenic rests and Wilms tumors. Pediatr Hematol Oncol 29:589–594

    Article  CAS  Google Scholar 

  15. Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Kim JC, Feinberg AP, Gerald WL, Vargas SO, Chin L, Iafrate AJ, Bell DW, Haber DA (2007) An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315:642–645

    Article  PubMed  CAS  Google Scholar 

  16. Ruteshouser EC, Robinson SM, Huff V (2008) Wilms Tumor Genetics: Mutations in WT1, WTX, and CTNNB1 Account for Only About One-Third of Tumors. Genes Chromosomes Cancer 47:461–470

    Article  PubMed  CAS  Google Scholar 

  17. Hawthorn L, Cowell KJ (2011) Analysis of Wilms Tumors Using SNP Mapping Array-Based Comparative Genomic Hybridization. PLoS One 6:e18941

    Article  PubMed  CAS  Google Scholar 

  18. Hohenstein P, Hastie ND (2006) The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet 15:R196–R201

    Article  PubMed  CAS  Google Scholar 

  19. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  PubMed  CAS  Google Scholar 

  20. Davies JA, Ladomery M, Hohenstein P, Michael L, Shafe A, Spraggon L, Hastie N (2004) Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum Mol Genet 13:235–246

    Article  PubMed  CAS  Google Scholar 

  21. Royer-Pokora B, Busch M, Beier M, Duhme C, de Torres C, Mora J, Brandt A, Royer HD (2010) Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm. Hum Mol Genet 19:1651–1668

    Article  PubMed  CAS  Google Scholar 

  22. Scott RH, Walker L, Olsen OE, Levitt G, Kenney I, Maher E, Owens CM, Pritchard-Jones K, Craft A, Rahman N (2006) Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch Dis Child 91:995–999

    Article  PubMed  CAS  Google Scholar 

  23. Scott RH, Stiller CA, Walker L, Rahman N (2006) Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet 43:705–714

    Article  PubMed  CAS  Google Scholar 

  24. Fischbach BV, Trout KL, Lewis J, Luis CA, Sika M (2005) WAGR syndrome: a clinical review of 54 cases. Pediatrics 116:984–988

    Article  PubMed  Google Scholar 

  25. Breslow E, Norris R, Norkool PA, Kang T, Beckwith JB, Perlman EJ, Ritchey ML, Green DM, Nichols KE (2003) Characteristics and outcomes of children with the Wilms tumor-Aniridia syndrome: a report from the National Wilms Tumor Study Group. J Clin Oncol 21:4579–4585

    Article  PubMed  Google Scholar 

  26. Jeanpierre C, Béroud C, Niaudet P, Junien C (1998) Software and database for the analysis of mutations in the human WT1 gene. Nucl Acids Res 26:271–274

    Article  PubMed  CAS  Google Scholar 

  27. Rahman N, Arbour L, Tonin P, Renshaw J, Pelletier J, Baruchel S, Pritchard-Jones K, Stratton MR, Narod SA (1996) Evidence for a familial Wilms tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet 4:461–463

    Article  Google Scholar 

  28. Rahman N, Arbour L, Houlston R, Bonaïti-Pellié C, Abidi F, Tranchemontagne J, Ford D, Narod S, Pritchard-Jones K, Foulkes WD, Schwartz C, Stratton MR (2000) Penetrance of mutations in the familial Wilms tumor gene FWT1. J Natl Cancer Inst 92:650–652

    Article  PubMed  CAS  Google Scholar 

  29. Rahman N, Arbour L, Tonin P, Baruchel S, Pritchard-Jones K, Narod SA, Stratton MR (1997) The familial Wilms tumour susceptibility gene, FWT1, may not be a tumour suppressor gene. Oncogene 14:3099–3102

    Article  PubMed  CAS  Google Scholar 

  30. McDonald JM, Douglass EC, Fisher R, Geiser CF, Krill CE, Strong LC, Virshup D, Huff V (1998) Linkage of familial Wilms tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res 58:1387–1390

    PubMed  CAS  Google Scholar 

  31. Huff V, Amos CI, Douglass EC, Fisher R, Geiser CF, Krill CE, Li FP, Strong LC, McDonald JM (1997) Evidence for genetic heterogeneity in familial Wilms tumor. Cancer Res 57:1859–1862

    PubMed  CAS  Google Scholar 

  32. Rump P, Zeegers MP, van Essen AJ (2005) Tumor risk in Beckwith-Wiedemann syndrome: A review and meta-analysis. Am J Med Genet 136A:95–104

    Article  Google Scholar 

  33. Mussa A, Peruzzi L, Chiesa N, De Crescenzo A, Russo S, Melis D, Tarani L, Baldassarre G, Larizza L, Riccio A, Silengo M, Ferrero GB (2011) Nephrological findings and genotype-phenotype correlation in Beckwith-Wiedemann syndrome. Pediatr Nephrol 27:397–406

    Article  PubMed  Google Scholar 

  34. Spreafico F, Notarangelo LD, Schumacher RF, Savoldi G, Gamba B, Terenziani M, Collini P, Fasoli S, Giordano L, Luisa B, Porta F, Massimo M, Radice P, Perotti D (2011) Clinical and Molecular Description of a Wilms Tumor in a Patient With Tuberous Sclerosis Complex. Am J Med Genet Part A 155:1419–1424

    Article  CAS  Google Scholar 

  35. Reid S, Renwick A, Seal S, Baskcomb L, Barfoot R, Jayatilake H, The Breast Cancer Suspectibility Collaboration (UK), Pritchard-Jones K, Stratton MR, Ridolfi-Lüthy A, Rahman N, for the Familial Wilms Tumour Collaboration (2005) Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J Med Genet 42:147-151

    Google Scholar 

  36. Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39:159–161

    Article  PubMed  CAS  Google Scholar 

  37. Reis S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, Wurm M, Batish SD, Lach FP, Yetgin S, Neitzel H, Ariffin H, Tischkowitz M, Mathew CG, Auerbach AD, Rahman N (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39:162–164

    Article  Google Scholar 

  38. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D; Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165-167

    Google Scholar 

  39. Cutcliffe C, Kersey D, Huang C-C, Zeng Y, Walterhouse D, Perlman EJ for the Renal Tumor Committee of the Children’s Oncology Group (2005) Clear Cell sarcoma of the Kidney: Up-regulation of neuronal Markers with Activation of the Sonic Hedgehog and Akt Pathways. Clin Cancer Res 11:7986–7994

    Article  Google Scholar 

  40. Brownlee NA, Perkins A, Stewart W, Jackle B, Pettenati MJ, Koty PP, Iskandar SS, Garvin AJ (2007) Recurring translocation (10;17) and deletion (14q) in clear cell sarcoma of the kidney. Arch Pathol Lab Med 131:446–451

    PubMed  Google Scholar 

  41. Versteege I, Sevenet N, Lange J, Rousseau-Merck M, Ambros P, Handgretinger R, Aurias A, Delattre O (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206

    Article  PubMed  CAS  Google Scholar 

  42. Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA (2011) Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 56:7–15

    Article  PubMed  Google Scholar 

  43. Imbalzano AN, Jones SN (2005) Snf5 tumor suppressor couples chromatin remodeling, checkpoint control, and chromosomal stability. Cancer Cell 7:294–295

    Article  PubMed  CAS  Google Scholar 

  44. Roberts CA, Leroux MM, Fleming MD, Orkin SH (2002) Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2:415–425

    Article  PubMed  CAS  Google Scholar 

  45. Wieser R, Fritz B, Ullmann R, Müller I, Galhuber M, Storlazzi CT, Ramaswamy A, Christiansen H, Shimizu N, Rehder H (2005) Novel rearrangement of chromosome band 22q11.2 causing 22q11 microdeletion syndrome-like phenotype and rhabdoid tumor of the kidney. Hum Mutation 26:78–83

    Article  CAS  Google Scholar 

  46. Jackson EM, Shaikh TH, Gururangan S, Jones MC, Malkin D, Nikkel SM, Zuppan CW, Wainwright LM, Zhang F, Biegel JA (2007) High-density single nucleotide polymorphism array analysis in patients with germ line deletions of 22q11.2 and malignant rhabdoid tumor. Hum Genet 122:117–127

    Article  PubMed  CAS  Google Scholar 

  47. Finch PT, Pivnick EK, Furman W, Odom C (2011) Wilms Tumor in a patient With 22q11.2 Microdeletion. Am J Med Genet Part A 155:1162–1164

    Article  CAS  Google Scholar 

  48. Selle B, Furtwängler R, Graf N, Kaatsch P, Bruder E, Leuschner I (2006) Population-based study of renal cell carcinoma in children in Germany, 1980-2005: more frequently localized tumors and underlying disorders compared with adult counterparts. Cancer 107:2906–2914

    Article  PubMed  Google Scholar 

  49. Sebire NJ, Vujanic GM (2009) Paediatric renal tumours: recent developments, new entities and pathological features. Histopathol 54:516–528

    Article  Google Scholar 

  50. Eble JN, Sauter G, Epstein JL (eds) (2004) World Health Organization Classification of Tumours, in Tumors of the kidney: Tumours of the Urinary System and Male Genital Organs. Lyon, France JARC Press 37-38

  51. Davis JJ, His B-L, Arroya JD, Vergas SO, Yeh YA, Motyckova G, Valencia P, Perez-Atayde AR, Argani P, Ladanyi M, Fletcher JA, Fisher DE (2003) Cloning of an Alpha-TFEB fusion in renal tumors harbouring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci 100:6051–6056

    Article  PubMed  CAS  Google Scholar 

  52. Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11:421–429

    Article  PubMed  CAS  Google Scholar 

  53. Gerald WL, Haber DA (2005) The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 15:197–205

    Article  PubMed  CAS  Google Scholar 

  54. Argani P, Faria PA, Epstein JI, Reuter VE, Perlman EJ, Beckwith JB, Ladanyi M (2000) Primary renal synovial sarcoma. Am J Surg Pathol 24:1087–1096

    Article  PubMed  CAS  Google Scholar 

  55. Cironi L, Provero P, Riggi N, Janiszewska M, Suva D, Suva M-L, Kindler V, Stamenkovic I (2009) Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One 4:e7904

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Royer-Pokora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royer-Pokora, B. Genetics of pediatric renal tumors. Pediatr Nephrol 28, 13–23 (2013). https://doi.org/10.1007/s00467-012-2146-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2146-4

Keywords

Navigation