Skip to main content

Advertisement

Log in

Pharmacological inhibition of beta-catenin in hepatoblastoma cells

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

The proto-oncogene beta-catenin is linked to an abnormal activation of the Wnt/beta-catenin-pathway and shows mutations in 50–90 % of hepatoblastoma (HB). Corresponding, the recently published murine orthotopic HB model differs from the former subcutaneous model by nuclear beta-catenin distribution. As the nuclear localization of beta-catenin is considered to reflect a more aggressive tumor growth, the influence of beta-catenin inhibition on cell viability and drug-efficiency in HB cells was analyzed.

Methods

Beta-catenin distribution in HB cells was analyzed by immunofluorescence. The influence of beta-catenin inhibitors Celecoxib, Etodolac, ICG001, and MET kinase inhibitor (SU11274) alone and in combination with cisplatin (CDDP) on HB cell lines (HuH6, HepT1) was evaluated by cell viability assays and BrdU incorporation.

Results

Celecoxib and ICG001 reduced dose-dependently HB cell viability and decreased nuclear beta-catenin in cultivated HB cells. Etodolac was without influence at concentrations up to 100 μM. Combinations of Celecoxib or ICG001 with MET kinase inhibitor or CDDP resulted in additive reduction of cell viability.

Conclusion

Pharmaceutical beta-catenin inhibitors can modulate the nuclear localization of beta-catenin and reduce cell viability of HB cells in vitro. These promising effects might optimize the outcome of high-risk HB. The orthotopic HB model is a suitable basis for further in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zsiros J, Maibach R, Shafford E, Brugieres L, Brock P, Czauderna P, Roebuck D, Childs M, Zimmermann A, Laithier V, Otte JB, de Camargo B, MacKinlay G, Scopinaro M, Aronson D, Plaschkes J, Perilongo G (2010) Successful treatment of childhood high-risk hepatoblastoma with dose-intensive multiagent chemotherapy and surgery: final results of the SIOPEL-3HR study. J Clin Oncol Off J Am Soc Clin Oncol 28(15):2584–2590. doi:10.1200/JCO.2009.22.4857

    Article  CAS  Google Scholar 

  2. Zimmermann A (2005) The emerging family of hepatoblastoma tumours: from ontogenesis to oncogenesis. Eur J Cancer 41(11):1503–1514. doi:10.1016/j.ejca.2005.02.035

    Article  PubMed  Google Scholar 

  3. Honda S, Arai Y, Haruta M, Sasaki F, Ohira M, Yamaoka H, Horie H, Nakagawara A, Hiyama E, Todo S, Kaneko Y (2008) Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. Br J Cancer 99(11):1891–1899. doi:10.1038/sj.bjc.6604754

    Article  PubMed  CAS  Google Scholar 

  4. Rainier S, Dobry CJ, Feinberg AP (1995) Loss of imprinting in hepatoblastoma. Cancer Res 55(9):1836–1838

    PubMed  CAS  Google Scholar 

  5. Lopez-Terrada D, Gunaratne PH, Adesina AM, Pulliam J, Hoang DM, Nguyen Y, Mistretta TA, Margolin J, Finegold MJ (2009) Histologic subtypes of hepatoblastoma are characterized by differential canonical Wnt and notch pathway activation in DLK + precursors. Hum Pathol 40(6):783–794. doi:10.1016/j.humpath.2008.07.022

    Article  PubMed  CAS  Google Scholar 

  6. Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schweinitz D, Pietsch T (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59(2):269–273

    PubMed  CAS  Google Scholar 

  7. Koch A, Waha A, Hartmann W, Hrychyk A, Schuller U, Waha A, Wharton KA Jr, Fuchs SY, von Schweinitz D, Pietsch T (2005) Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin cancer Res Off J Am Assoc Cancer Res 11(12):4295–4304. doi:10.1158/1078-0432.CCR-04-1162

    Article  CAS  Google Scholar 

  8. Wei Y, Fabre M, Branchereau S, Gauthier F, Perilongo G, Buendia MA (2000) Activation of beta-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene 19(4):498–504. doi:10.1038/sj.onc.1203356

    Article  PubMed  CAS  Google Scholar 

  9. Yamaoka H, Ohtsu K, Sueda T, Yokoyama T, Hiyama E (2006) Diagnostic and prognostic impact of beta-catenin alterations in pediatric liver tumors. Oncol Rep 15(3):551–556

    PubMed  CAS  Google Scholar 

  10. Purcell R, Childs M, Maibach R, Miles C, Turner C, Zimmermann A, Sullivan M (2011) HGF/c-Met related activation of beta-catenin in hepatoblastoma. J Exp Clini Cancer Res CR 30:96. doi:10.1186/1756-9966-30-96

    Article  CAS  Google Scholar 

  11. Park WS, Oh RR, Park JY, Kim PJ, Shin MS, Lee JH, Kim HS, Lee SH, Kim SY, Park YG, An WG, Jang JJ, Yoo NJ, Lee JY (2001) Nuclear localization of beta-catenin is an important prognostic factor in hepatoblastoma. J Pathol 193(4):483–490

    Article  PubMed  CAS  Google Scholar 

  12. Gavert N, Ben-Ze’ev A (2007) Beta-catenin signaling in biological control and cancer. J Cell Biochem 102(4):820–828. doi:10.1002/jcb.21505

    Article  PubMed  CAS  Google Scholar 

  13. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398. doi:10.1038/nrc2389

    Article  PubMed  CAS  Google Scholar 

  14. Ellerkamp V, Armeanu-Ebinger S, Wenz J, Warmann SW, Schafer J, Ruck P, Fuchs J (2011) Successful establishment of an orthotopic hepatoblastoma in vivo model in NOD/LtSz-scid IL2Rgammanull mice. PLoS ONE 6(8):e23419. doi:10.1371/journal.pone.0023419

    Article  PubMed  CAS  Google Scholar 

  15. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. doi:10.1016/j.devcel.2009.06.016

    Article  PubMed  CAS  Google Scholar 

  16. Monga SP, Mars WM, Pediaditakis P, Bell A, Mule K, Bowen WC, Wang X, Zarnegar R, Michalopoulos GK (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 62(7):2064–2071

    PubMed  CAS  Google Scholar 

  17. Pietsch T, Fonatsch C, Albrecht S, Maschek H, Wolf HK, von Schweinitz D (1996) Characterization of the continuous cell line HepT1 derived from a human hepatoblastoma. Lab Investig J Tech Methods Pathol 74(4):809–818

    CAS  Google Scholar 

  18. Doi I (1976) Establishment of a cell line and its clonal sublines from a patient with hepatoblastoma. Gann = Gan 67(1):1–10

    PubMed  CAS  Google Scholar 

  19. Lieber J, Kirchner B, Eicher C, Warmann SW, Seitz G, Fuchs J, Armeanu-Ebinger S (2010) Inhibition of Bcl-2 and Bcl-X enhances chemotherapy sensitivity in hepatoblastoma cells. Pediatr Blood Cancer 55(6):1089–1095. doi:10.1002/pbc.22740

    Article  PubMed  Google Scholar 

  20. Dewerth A, Wonner T, Lieber J, Ellerkamp V, Warmann SW, Fuchs J, Armeanu-Ebinger S (2012) In vitro evaluation of the Aurora kinase inhibitor VX-680 for Hepatoblastoma. Pediatr Surg Int 28(6):579–589. doi:10.1007/s00383-012-3086-6

    Article  PubMed  Google Scholar 

  21. Oue T, Yoneda A, Uehara S, Yamanaka H, Fukuzawa M (2009) Increased expression of multidrug resistance-associated genes after chemotherapy in pediatric solid malignancies. J Pediatr Surg 44(2):377–380. doi:10.1016/j.jpedsurg.2008.10.088

    Article  PubMed  Google Scholar 

  22. Warmann S, Hunger M, Teichmann B, Flemming P, Gratz KF, Fuchs J (2002) The role of the MDR1 gene in the development of multidrug resistance in human hepatoblastoma: clinical course and in vivo model. Cancer 95(8):1795–1801. doi:10.1002/cncr.10858

    Article  PubMed  CAS  Google Scholar 

  23. Sawyers C (2004) Targeted cancer therapy. Nature 432(7015):294–297. doi:10.1038/nature03095

    Article  PubMed  CAS  Google Scholar 

  24. He B, You L, Uematsu K, Xu Z, Lee AY, Matsangou M, McCormick F, Jablons DM (2004) A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6(1):7–14

    PubMed  CAS  Google Scholar 

  25. Lee JS, Hur MW, Lee SK, Choi WI, Kwon YG, Yun CO (2012) A novel sLRP6E1E2 inhibits canonical Wnt signaling, epithelial-to-mesenchymal transition, and induces mitochondria-dependent apoptosis in lung cancer. PLoS ONE 7(5):e36520. doi:10.1371/journal.pone.0036520

    Article  PubMed  CAS  Google Scholar 

  26. Purcell R, Childs M, Maibach R, Miles C, Turner C, Zimmermann A, Czauderna P, Sullivan M (2011) Potential biomarkers for hepatoblastoma: results from the SIOPEL-3 study. Eur J Cancer. doi:10.1016/j.ejca.2011.10.019

    PubMed  Google Scholar 

  27. Ueda Y, Hiyama E, Kamimatsuse A, Kamei N, Ogura K, Sueda T (2011) Wnt signaling and telomerase activation of hepatoblastoma: correlation with chemosensitivity and surgical resectability. J Pediatr Surg 46(12):2221–2227. doi:10.1016/j.jpedsurg.2011.09.003

    Article  PubMed  Google Scholar 

  28. Curtin JC, Lorenzi MV (2010) Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 1(7):563–577

    PubMed  Google Scholar 

  29. Herencia C, Martinez-Moreno JM, Herrera C, Corrales F, Santiago-Mora R, Espejo I, Barco M, Almaden Y, de la Mata M, Rodriguez-Ariza A, Munoz-Castaneda JR (2012) Nuclear translocation of beta-catenin during mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype. PLoS ONE 7(4):e34656. doi:10.1371/journal.pone.0034656

    Article  PubMed  CAS  Google Scholar 

  30. Zulehner G, Mikula M, Schneller D, van Zijl F, Huber H, Sieghart W, Grasl-Kraupp B, Waldhor T, Peck-Radosavljevic M, Beug H, Mikulits W (2010) Nuclear beta-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence. Am J Pathol 176(1):472–481. doi:10.2353/ajpath.2010.090300

    Article  PubMed  CAS  Google Scholar 

  31. Curia MC, Zuckermann M, De Lellis L, Catalano T, Lattanzio R, Aceto G, Veschi S, Cama A, Otte JB, Piantelli M, Mariani-Costantini R, Cetta F, Battista P (2008) Sporadic childhood hepatoblastomas show activation of beta-catenin, mismatch repair defects and p53 mutations. Mod Pathol Off J US Can Acad Pathol Inc 21(1):7–14. doi:10.1038/modpathol.3800977

    CAS  Google Scholar 

  32. Ranganathan S, Tan X, Monga SP (2005) Beta-catenin and met deregulation in childhood Hepatoblastomas. Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatr Patholo Soc 8(4):435–447. doi:10.1007/s10024-005-0028-5

    Article  CAS  Google Scholar 

  33. Gupta K, Rane S, Das A, Marwaha RK, Menon P, Rao K (2012) Relationship of beta-catenin and postchemotherapy histopathologic changes with overall survival in patients with hepatoblastoma. J Pediatr Hematol Oncol. doi:10.1097/MPH.0b013e3182580471

    Google Scholar 

  34. Park SE, Yoo HS, Jin CY, Hong SH, Lee YW, Kim BW, Lee SH, Kim WJ, Cho CK, Choi YH (2009) Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 47(7):1667–1675. doi:10.1016/j.fct.2009.04.014

    Article  CAS  Google Scholar 

  35. Shalaby T, Hiyama E, Grotzer MA (2010) Telomere maintenance as therapeutic target in embryonal tumours. Anti-Cancer Agents Med Chem 10(3):196–212

    Article  CAS  Google Scholar 

  36. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94(4):252–266

    Article  PubMed  CAS  Google Scholar 

  37. Greenspan EJ, Madigan JP, Boardman LA, Rosenberg DW (2011) Ibuprofen inhibits activation of nuclear {beta}-catenin in human colon adenomas and induces the phosphorylation of GSK-3{beta}. Cancer Prev Res (Phila) 4(1):161–171. doi:10.1158/1940-6207.CAPR-10-0021

    Article  CAS  Google Scholar 

  38. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107(4):1183–1188

    PubMed  CAS  Google Scholar 

  39. Grosch S, Maier TJ, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98(11):736–747. doi:10.1093/jnci/djj206

    Article  PubMed  Google Scholar 

  40. Behari J, Zeng G, Otruba W, Thompson MD, Muller P, Micsenyi A, Sekhon SS, Leoni L, Monga SP (2007) R-Etodolac decreases beta-catenin levels along with survival and proliferation of hepatoma cells. J Hepatol 46(5):849–857. doi:10.1016/j.jhep.2006.11.017

    Article  PubMed  CAS  Google Scholar 

  41. Yao H, Ashihara E, Maekawa T (2011) Targeting the Wnt/beta-catenin signaling pathway in human cancers. Expert Opin Ther Targ 15(7):873–887. doi:10.1517/14728222.2011.577418

    Article  CAS  Google Scholar 

  42. Tuynman JB, Vermeulen L, Boon EM, Kemper K, Zwinderman AH, Peppelenbosch MP, Richel DJ (2008) Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res 68(4):1213–1220. doi:10.1158/0008-5472.CAN-07-5172

    Article  PubMed  CAS  Google Scholar 

  43. Andre N, Abed S, Orbach D, Alla CA, Padovani L, Pasquier E, Gentet JC, Verschuur A (2011) Pilot study of a pediatric metronomic 4-drug regimen. Oncotarget 2(12):960–965

    PubMed  Google Scholar 

  44. Buendia MA (2002) Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects. Med Pediatr Oncol 39(5):530–535. doi:10.1002/mpo.10180

    Article  PubMed  Google Scholar 

  45. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, Ha JR, Kahn M (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 101(34):12682–12687. doi:10.1073/pnas.0404875101

    Article  PubMed  CAS  Google Scholar 

  46. Henderson WR Jr, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA, Kahn M (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci USA 107(32):14309–14314. doi:10.1073/pnas.1001520107

    Article  PubMed  Google Scholar 

  47. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577

    PubMed  CAS  Google Scholar 

  48. Gao J, Inagaki Y, Song P, Qu X, Kokudo N, Tang W (2012) Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma. Pharmacol Res Off J Italian Pharmacol Soc 65(1):23–30. doi:10.1016/j.phrs.2011.11.011

    Article  CAS  Google Scholar 

  49. Lieber J, Ellerkamp V, Wenz J, Kirchner B, Warmann SW, Fuchs J, Armeanu-Ebinger S (2012) Apoptosis sensitizers enhance cytotoxicity in hepatoblastoma cells. Pediatr Surg Int 28(2):149–159. doi:10.1007/s00383-011-2988-z

    Article  PubMed  Google Scholar 

  50. Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC (2010) Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 3:11. doi:10.1186/1757-2215-3-11

    Article  PubMed  Google Scholar 

  51. Wang J, Zhou D, He X, Wang Y, Hu W, Jiang L, Dou J (2011) Effect of downregulated beta-catenin on cell proliferative activity, the sensitivity to chemotherapy drug and tumorigenicity of ovarian cancer cells. Cell Mol Biol 57(Suppl):OL1606–OL1613

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ellerkamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellerkamp, V., Lieber, J., Nagel, C. et al. Pharmacological inhibition of beta-catenin in hepatoblastoma cells. Pediatr Surg Int 29, 141–149 (2013). https://doi.org/10.1007/s00383-012-3237-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-012-3237-9

Keywords

Navigation