Skip to main content

Advertisement

Log in

MiRNA-145 Regulates the Development of Congenital Heart Disease Through Targeting FXN

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Congenital heart disease (CHD) is the leading cause of death in infants in the world. The study of CHDs has come a long way since their classification and description. Although transcriptional programmes that are impaired in individuals with CHDs are being identified, the mechanisms of how these deficiencies translate to a structural defect are unknown. In this study, using high-throughput microarray analysis and molecular network analysis, FXN was identified to be the most differentially expressed key gene in CHD. By TargetScan analysis, we predicted FXN was the target gene of miRNA-145 and miRNA-182. Through real-time PCR analysis of clinical samples and experiments in cell lines, we confirmed that miRNA-145 but not miRNA-182 directly binds to the 3′ UTR region of FXN and negatively regulates its expression. We further found that through targeting FXN, miRNA-145 regulates apoptosis and mitochondrial function. In general, our study confirmed the differentially expressed FXN regulates the development of CHD and the differential expression was under the control of miRNA-145. These results might provide new insight into the understanding of the CHD pathogenesis and may facilitate further therapeutic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Mahdawi S et al (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746

    Article  CAS  PubMed  Google Scholar 

  2. Baralle M et al (2008) Influence of Friedreich ataxia GAA noncoding repeat expansions on pre-mRNA processing. Am J Hum Genet 83(1):77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bulteau AL et al (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305(5681):242–245

    Article  CAS  PubMed  Google Scholar 

  4. Calabrese V et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233(1–2):145–162

    Article  CAS  PubMed  Google Scholar 

  5. Campuzano V et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427

    Article  CAS  PubMed  Google Scholar 

  6. Cordes KR, Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ Res 104(6):724–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9(11):831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frederikse PH, Donnelly R, Partyka LM (2006) miRNA and Dicer in the mammalian lens: expression of brain-specific miRNAs in the lens. Histochem Cell Biol 126(1):1–8

    Article  CAS  PubMed  Google Scholar 

  9. Gakh O et al (2010) Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron–sulfur cluster assembly. J Biol Chem 285(49):38486–38501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gong LG et al (2005) Analysis of single nucleotide polymorphisms and haplotypes in HOXC gene cluster within susceptible region 12q13 of simple congenital heart disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22(5):497–501

    CAS  PubMed  Google Scholar 

  11. Greene E et al (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35(10):3383–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He S et al (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun 441(4):763–769

    Article  CAS  PubMed  Google Scholar 

  13. Hoffman JI (1995) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16(4):155–165

    CAS  PubMed  Google Scholar 

  14. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900

    Article  PubMed  Google Scholar 

  15. Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  16. Lim SS et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2224–2260

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu C, Cortopassi G (2007) Frataxin knockdown causes loss of cytoplasmic iron–sulfur cluster functions, redox alterations and induction of heme transcripts. Arch Biochem Biophys 457(1):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369(5):448–457

    Article  CAS  PubMed  Google Scholar 

  19. Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256(Suppl 1):9–17

    Article  CAS  PubMed  Google Scholar 

  20. Schoenfeld RA et al (2005) Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14(24):3787–3799

    Article  CAS  PubMed  Google Scholar 

  21. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stelzl U et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  CAS  PubMed  Google Scholar 

  23. Utsunomiya T et al (2014) Specific miRNA expression profiles of non-tumor liver tissue predict a risk for recurrence of hepatocellular carcinoma. Hepatol Res 44(6):631–638

    Article  CAS  PubMed  Google Scholar 

  24. van Rooij E, Olson EN (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117(9):2369–2376

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whitnall M et al (2008) The MCK mouse heart model of Friedreich’s ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc Natl Acad Sci USA 105(28):9757–9762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317

    Article  CAS  PubMed  Google Scholar 

  28. Zhao N et al (2015) MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells. Circ Res 116(1):23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Science and Technology Project of Xi ’an Municipal Health Bureau (No. 2013028) and the Provincial Natural Science Basic Research Foundation of Shaanxi (No. 2014JM4152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Tian, D., Hu, J. et al. MiRNA-145 Regulates the Development of Congenital Heart Disease Through Targeting FXN. Pediatr Cardiol 37, 629–636 (2016). https://doi.org/10.1007/s00246-015-1325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-015-1325-z

Keywords

Navigation