Skip to main content
Log in

Association of TBX20 Gene Polymorphism with Congenital Heart Disease in Han Chinese Neonates

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

As a transcription factor mainly expressed in cardiovascular system, T-box 20 (TBX20) plays an important role in embryonic cardiovascular system development and adult heart function. Previous studies have identified associations of two SNPs in the T-box DNA-binding domain of TBX20 with congenital heart disease (CHD) in two Caucasian families, but the associations of TBX20 mutations underlying the more common populations with CHD remain to be uncovered. In this study, 25 unrelated Chinese Han neonates with CHD and 25 healthy children as controls were investigated for TBX20 mutations. SNP genotyping was performed by PCR-DNA sequencing. The selected SNPs were well genotyped and SNP rs3999941 was found to be strongly associated with CHD (p = 0.007). The minor allele of rs3999941 showed a high-risk factor for CHD (OR 4.24; 95 % CI 1.41–12.71). Besides, we found a new SNP site located at the 657th nucleotide of the exon 5 of TBX20 gene which may also be associated with CHD, c.657A>C. The frequency was significantly different between two groups (p = 0.011), the minor allele of SNP c.657A>C also showed a risk factor for CHD (OR 2.56; 95 % CI 1.02–6.46). These findings suggested that the TC genotype of SNP rs3999941 and AC genotype of the new SNP c.657A>C in the TBX20 gene may be risk factors for CHD and thus screening of these SNPs may have some implications in the prevention and treatment of CHD in Han Chinese children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahn D-G, Ruvinsky I, Oates AC, Silver LM, Ho RK (2000) tbx20, a new vertebrate T-box gene expressed in the cranial motor neurons and developing cardiovascular structures in zebrafish. Mech Dev 95:253–258

    Article  CAS  PubMed  Google Scholar 

  2. Andersen TA, Troelsen Kde L, Larsen LA (2014) Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 71:1327–1352

  3. Brown D, Binder O, Pagratis M, Parr BA, Conlon FL (2003) Developmental expression of the Xenopus laevis Tbx20 orthologue. Dev Genes Evol 212:604–607

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Brown DD, Martz SN, Binder O, Goetz SC, Price BM, Smith JC et al (2005) Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 132:553–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cai X, Zhang W, Hu J, Zhang L, Sultana N, Wu B et al (2013) Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development 140:3176–3187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Carson CT, Kinzler ER, Parr BA (2000) Tbx12, a novel T-box gene, is expressed during early stages of heart and retinal development. Mech Dev 96:137–140

    Article  CAS  PubMed  Google Scholar 

  7. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    Article  CAS  PubMed  Google Scholar 

  8. Digilio MC, Marino B, Giannotti A, Toscano A, Dallapiccola B (1997) Recurrence risk figures for isolated tetralogy of Fallot after screening for 22q11 microdeletion. J Med Genet 34:188–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ferencz C, Neill CA, Boughman JA, Rubin JD, Brenner JI, Perry LW (1989) Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J Pediatr 114:79–86

    Article  CAS  PubMed  Google Scholar 

  10. Grech V, Gatt M (1999) Syndromes and malformations associated with congenital heart disease in a population-based study. Int J Cardiol 68:151–156

    Article  CAS  PubMed  Google Scholar 

  11. Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91:212–222

    Article  CAS  PubMed  Google Scholar 

  12. Hammer S, Toenjes M, Lange M, Fischer JJ, Dunkel I, Mebus S et al (2008) Characterization of TBX20 in human hearts and its regulation by TFAP2. J Cell Biochem 104:1022–1033

    Article  CAS  PubMed  Google Scholar 

  13. Hammer S, Toenjes M, Lange M, Fischer JJ, Dunkel I, Mebus S et al (2008) Characterization of TBX20 in human hearts and its regulation by TFAP2. J Cell Biochem 104:1022–1033

    Article  CAS  PubMed  Google Scholar 

  14. Hariri F, Nemer M, Nemer G (2012) T-box factors: insights into the evolutionary emergence of the complex heart. Ann Med 44:680–693

    Article  PubMed  Google Scholar 

  15. Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H et al (2005) Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet Part A 135:47–52

    Article  PubMed  Google Scholar 

  16. Hoffman JI (1990) Congenital heart disease: incidence and inheritance. Pediatr Clin North Am 37:25–43

    CAS  PubMed  Google Scholar 

  17. Hoffman J (1995) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16:155–165

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  19. Kenny D, Hijazi ZM (2012) To inhale or to nebulize: treating the pulmonary vascular bed post-operatively in children with congenital heart disease. Cardiol J 19:335–336

    Article  PubMed  Google Scholar 

  20. Kidd SA (1995) Congenital heart disease: a 10 year cohort. J Paediatr Child Health 31:362

    Article  CAS  PubMed  Google Scholar 

  21. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV et al (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  PubMed  Google Scholar 

  22. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML et al (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Liu C-X, Shen A-D, Li X-F, Jiao W-W, Bai S, Yuan F et al (2009) Association of TBX5 gene polymorphism with ventricular septal defect in the Chinese Han population. Chin Med J 122:30

    CAS  PubMed  Google Scholar 

  24. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS et al (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314:1930–1933

    Article  CAS  PubMed  Google Scholar 

  25. Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239

    Article  CAS  PubMed  Google Scholar 

  26. Plageman TF, Yutzey KE (2004) Differential expression and function of Tbx5 and Tbx20 in cardiac development. J Biol Chem 279:19026–19034

    Article  CAS  PubMed  Google Scholar 

  27. Posch MG, Gramlich M, Sunde M, Schmitt KR, Lee SH, Richter S et al (2010) A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J Med Genet 47:230–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Posch MG, Gramlich M, Sunde M, Schmitt KR, Lee SH, Richter S et al (2010) A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J Med Genet 47:230–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Qian L, Mohapatra B, Akasaka T, Liu J, Ocorr K, Towbin JA et al (2008) Transcription factor neuromancer/TBX20 is required for cardiac function in Drosophila with implications for human heart disease. Proc Natl Acad Sci 105:19833–19838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Qiao Y, Wanyan H, Xing Q, Xie W, Pang S, Shan J et al (2012) Genetic analysis of the TBX20 gene promoter region in patients with ventricular septal defects. Gene 500:28–31

    Article  CAS  PubMed  Google Scholar 

  31. Ramser J, Ahearn ME, Lenski C, Yariz KO, Hellebrand H, von Rhein M et al (2008) Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am J Hum Genet 82:188–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A (2008) Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr 153:807–813

    Article  PubMed Central  PubMed  Google Scholar 

  33. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A (2008) Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr 153:807–813

    Article  PubMed Central  PubMed  Google Scholar 

  34. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB et al (2012) Heart disease and stroke statistics—2012 update a report from the American heart association. Circulation 125:e2–e220

    Article  PubMed  Google Scholar 

  35. Ryan K, Chin AJ (2003) T-box genes and cardiac development. Birth Defects Res Part C, Embryo Today: Rev 69:25–37

    Article  CAS  Google Scholar 

  36. van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ (2011) The changing epidemiology of congenital heart disease. Nat Rev Cardiol 8:50–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the subjects and their families for participation. We also thank members of the Pediatric department for support.

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

246_2014_1073_MOESM1_ESM.tif

Figure S1 DNA and amino acid sequences of two selected SNPs within the exon 5 of TBX20 gene: rs6950175/c.765C>A/Ile255Ile and rs3999941/c.766T>C/Phe256Leu (From NCBI) (TIFF 1201 kb)

Supplementary material 2 (DOC 31 kb)

Supplementary material 3 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Sun, F., Fu, J. et al. Association of TBX20 Gene Polymorphism with Congenital Heart Disease in Han Chinese Neonates. Pediatr Cardiol 36, 737–742 (2015). https://doi.org/10.1007/s00246-014-1073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-014-1073-5

Keywords

Navigation