Discussion
The in-hospital survival rates among the isolated liver injury and non-isolated liver injury groups were 99% and 88%, respectively, and the rates of AE utilization were 27% and 22%, respectively.
To facilitate comparison with the present study, the design and results of previous studies are summarized in online supplemental table 2. In our study, the population was limited to severe liver injury (liver OIS grades ≥Ⅲ), which was thought to affect the management and outcomes. Among patients with isolated liver injury, approximately 26% underwent AE, and this rate was higher than in previous studies of cases with high-grade injury (grade Ⅲ or higher, 4.8%).10 A recent systematic review of pediatric organ injury indicated that the use of AE was limited to patients with hemodynamic compromise from ongoing bleeding.8 11 In our study the isolated liver injury patients requiring AE whose age-adjusted shock index12 were approximately 40% (27/68) positive, and this rate was higher than the rate (25%) of Swendiman’s study.10 With respect to hemodynamic status, AE for isolated liver injury was used for appropriate hemodynamically unstable cases. Among patients with isolated liver injury who underwent AE, only 20% needed blood transfusion. We were unable to find any published studies regarding the incidence rate of blood transfusion among patients with isolated liver injury requiring AE; thus, there was no frame of reference for comparison with our results. Kiankhooy and colleagues reported that pediatric patients with solid organ injury did not require blood transfusion after AE.13 In the present study, the median time to AE was 144 (101–262) minutes, which was shorter than in previous reports10 13 [216 (120–420) minutes]; therefore, a shorter time to AE may contribute to lower blood transfusion rates.
AE was often used among patients with non-isolated liver injury in the present study. Notably, liver trauma patients who had additional severe abdominal injury and underwent AE (online supplemental table 1) were initially hemodynamically unstable, and all patients required blood transfusion. Half of the patients had both liver injury and splenic injury. It has been reported that combined liver and splenic injury is a risk factor for NOM failure4 and that NOM failure for bleeding occurs within 162 (102–240) minutes from injury.4 14 In our study, AE was deployed within 180 minutes as well as laparotomy (figure 1). Especially in patients with combined liver and additional abdominal injury, the median time to AE was 84 (67–128) minutes, and this shorter time could obviate the need for laparotomy.
The decision to use AE and laparotomy depends on various factors, including hospital-related factors, such as the utilization of angiography. A previous report showed that adult trauma centers conducted angiography for isolated splenic trauma at nine times the frequency of pediatric trauma centers.10 In Japan, there are few pediatric trauma centers, and pediatric trauma patients are generally managed at adult trauma centers, which could account for the country’s high frequency of AE use. Guidelines of interventional radiology for liver injury in Japan suggest the practice of interventional radiology for pediatric patients with liver injury could be selected based on CT findings (the existence of arterial extravasation) and should be selected more carefully than adult patients.15 On the other hand, all the 70 patients underwent AE in this study and there was no report that demonstrated such a large pediatric case underwent AE, and this was one of the strengths of this study.
The in-hospital survival rate among patient with isolated liver injury was 99% and was similar to previous reports.4 6 10 Regardless of the grades of liver injury, pediatric patients with isolated liver injury could be expected to survive. The in-hospital survival rate among patients with non-isolated liver injury was 12%, which was higher than the 7.5% rate reported by Dervan et al (online supplemental table 2). The higher rate was likely attributable to disease severity (OIS≥Ⅲ) in the patients selected, and the causes of death were thought to be multisystem trauma including traumatic brain injury.4 Regarding secondary outcomes among patients with isolated liver injury, almost all the cases that underwent NOM with AE and approximately 76% of the NOM cases were admitted to the ICU. Stylianos showed that approximately 76% of patients with isolated spleen or liver injury with a CT grade greater than 3 were admitted to the ICU, and this rate was similar to that in our study.11 Recent guidelines suggest ICU admission for patients with a CT grade greater than 4.8 11 In addition, LOS in our study was longer than that of recent systematic review recommendations.8 This result may be attributed to characteristics of the healthcare system in Japan.16 The self-pay burden of patients is low in Japan because Japan has a universal healthcare system and the High-Cost Medical Expense Financial Plan extends to almost all citizens. Therefore, the LOS was longer compared with that of other countries.
There were several limitations of this study. First, because this was an observational study, we could not obtain precise indication for AE, such as arterial extravasation on enhanced CT or information on embolized arteries. Second, we could not gain information of who was initially managing pediatric patients with liver injury.10 Therefore, additional prospective study is needed to verify the usefulness of AE for pediatric patients with liver injury.
In conclusion, this study showed that in-hospital survival among pediatric patients with liver injury in Japan was comparable with that of other developed countries, while the management approach was characterized by high rates of AE utilization (27% and 22% among patients with isolated liver injury and non-isolated liver injury, respectively). A shorter time to AE may have reduced NOM failure among patients with non-isolated liver injury.