Discussion
The most important finding in this study was that in-hospital POMR within 30 days was 320 per 10 000 procedures and that higher ASA PS (III and above), emergency surgery, congenital anomalies, repeated (multiple) surgeries, and neonatal age groups were significant predictors of unexpected perioperative death. In addition, the majority of patients died from preoperative conditions complicated by sepsis.
Perioperative mortality has been reported to vary in LMICs from 2 to 10 times higher of that in HICs and can be 100-fold to 200-fold higher in certain low-income countries (LICs).2 In the present study, POMRs within 24 hours, 7 days, and 30 days were 113.2 per 10 000 procedures, 207.6 per 10 000 procedures, and 320.8 per 10 000 procedures, respectively. These figures are higher than those reported in HICs.13 14 24 In a GlobalSurg Collaborative study,10 4 to 7 fold higher 30-day mortality was observed in LMICs compared with HICs. In this same study, the 24-hour mortality rates for LICs, medium-income countries and HICs were 2.6%, 0.7% and 0.3%, respectively, while the 30-day mortality rates were 8.3%, 2.9% and 0.9%, respectively. In a multicenter study in an LIC like ours, Newton et al4 found 24-hour and 7-day mortality rates of 0.8% and 1.7%, respectively, that were comparable to our study. However, Torborg et al,5 in South Africa (a middle-income country), reported a much lower 30-day mortality rate of 1.1%. A much lower 30-day mortality rate of 0.7% was reported by Bonasso et al in the USA.14 These studies5 14 24 suggest that 30-day mortality rate in our center is at least 4 to 5 times higher than reports from middle and high-income countries(MHICs). The potential reasons for this difference in mortality rates could be multifactorial and speculative. These include late presentation, sepsis, inadequate health personnel, grossly inadequate physiological monitoring facilities on the wards, and a dearth of a dedicated neonatal intensive care unit. We also noted that the inclusion of all types of surgeries especially cardiac, neurosurgeries and patients with poorer ASA status certainly influenced our mortality rates.
Gender played no role in perioperative death in our series and this was consistent with most reports.10 24 However, in a mixed population study, males had a two fold higher risk of death than females.3
As in our previous study and in other literature reports,5 16 25 neonates are more susceptible to perioperative death than older children. The risk of neonatal death in the present series is 20 times higher than that of their older counterparts. We noted that 58.8% of deaths recorded in the present study were neonates. The high mortality rate of 2439 per 10 000 procedures within 30 days in this age group called for a review of the neonatal surgical program in our hospital. Gastroschisis, necrotizing enterocolitis, and esophageal atresia were the leading causes of mortality in these neonates who were very sick at admission. Congenital anomaly especially among neonates was associated with a 12.7-fold risk of death compared with acquired conditions. The complexity of congenital anomalies, especially when cardiac defects are involved, seems to have a negative impact on postoperative outcome.10 15 Livingston et al15 observed that congenital anomalies had a higher mortality rate compared with acquired conditions. The presence of prematurity in some of the congenital cases seems to decrease their chances of survival. Weinberg and associates26 identified gestational age as one of the six preoperative risk factors of postoperative morbidity and mortality. Other factors were ASA PS >3 (III), a history of cardiovascular comorbidities, and cardiovascular, neurological and orthopedic procedures. Akbilgic et al13 noted that children born prematurely had a four fold higher risk, while neonates undergoing surgery were at over 20-fold higher risk of unexpected death within 30 days following surgical procedure than older children. The burden of neonatal surgical conditions appears to overwhelm limited facilities and expertise that are available in LMICs, which have higher morbidity and mortality compared with HICs.
Prenatal screening and diagnosis are lacking in our hospitals. These would have enabled informed decisions to be made by parents and would have allowed such pregnancies to be supervised in a specialist hospital with facilities to care for the babies and to reduce the chances of perioperative death. In addition, child birth in unorthodox health facilities, financial constraints, ignorance and poor transportation system often lead to late presentations where some babies have septicemia during admission to the hospital. As in our institution and in other health facilities in sub-Saharan Africa, other researchers have noted lack of dedicated neonatal intensive care unit, inadequate manpower (doctors, nurses and allied professionals), unavailability of parenteral nutrition and infrastructural deficits6–8 16 19 as factors that may increase perioperative mortality in LMICs.
A high ASA PS has been shown to predict perioperative mortality.3 24 25 Operative care, when stratified by ASA PS, provides insights into ways of targeting improvements to care. Approximately, 82.4% of perioperative death in our study occurred in patients with poorer ASA PS (III–V). Our findings along with other similar publications observed that surgical patients exhibiting a poorer ASA PS were more likely to experience perioperative mortality.4 5 In this study, there was a seven fold increase in perioperative mortality when the ASA PS was greater than 2 (II). The risk of death was higher in those with ASA III and above. A high ASA status suggests that such patients are critically ill and may require monitoring devices, ionotropic and ventilator support. In addition, this group of patients should be recognized ab initio, operated on by specialist pediatric surgeons and anesthesiologists, and managed in neonatal or pediatric intensive or critical care units to reduce mortality rate. Unfortunately, the available manpower could not allow for these benefits, and some of the patients were operated on by resident doctors in surgery and anesthesia.
Our study has shown that multiple or repeated surgical procedures influenced mortality rate. The risk of death is 9.7-fold higher in those who had two or more repeated operative procedures either as a result of complications of previous surgeries, recurrence or progression of the initial pathology. This finding is consistent with literature reports from other LMICs in sub-Saharan Africa.10 20 27 In addition, we observed in this study as well as other reports in LMICs that postoperative septic complications were the principal indications for reoperations and eventual demise of these children.7 8 18 28 This contrasts with reports from developed nations where the majority of postoperative complications are non-infective.10 26 Though antibiotics were given to patients with postoperative sepsis, some of the parents or caregivers of these children failed to purchase antibiotics and other medications, leading to progressive deterioration of health status of these children. The national health insurance scheme that may assist in solving some of these challenges is still at its infancy in our country, and has not yet been embraced by a substantial portion of the populace. Parents still pay out of pocket to obtain health services. This implies that less privileged children are more likely to die from their illness in our society especially when these children have complex anomalies. We also identified that lack of pediatric trained nurses and a dearth of monitoring facilities for early detection of deterioration of medical conditions in some of the patients whose limited physiological reserve may have contributed to the POMR.
In this study, emergency operative procedures were associated with higher POMR compared with elective procedures. This result is consistent with reports from HICs as well as LMICs.3 4 10 24 27 In contrast to our previous report16 on perioperative mortality where typhoid perforation was the principal indication for emergency surgery leading to high morbidity and mortality, we observed a changing pattern towards congenital anomalies. This may be explained by an increase in the level of hygiene and provision of portable water in our environment, which has gradually reduced the incidence of typhoid septicemia.
Among the cohort of patients who had emergency operations, we found that the duration of preoperative symptoms as an independent factor did not influence surgical outcome, though the majority of the patients presented late. This result contrasts with our earlier retrospective study.16 We attributed this to the critical condition of some of the children with high ASA status who presented within 24 hours of their illness.
The major triggering factor for perioperative mortality in this study remained the underlying patient’s disease. The mortality risk conferred by surgery in the current study was eight fold higher than the previous report from our center.16 This could be explained by the fact that all pediatric surgical conditions (including cardiac and neurosurgical cases) were included in the present study.
Previous reports29 30 noted that anesthesia-related death was 2 to 3 times higher in middle-income countries and may be 1000-fold higher in some poor countries. In the present study, anesthesia-related mortality rate was 18.9 per 10 000 procedures which was at least 19 times higher than reports from HICs. Although cause of death was based on subjective interpretation, we did not find any patient in which the cause of death was solely related to surgical or anesthetic procedure. Previous studies reported that a quarter to nearly half of perioperative death could be potentially avoided by providing access to surgical care especially in low-resource countries.1 2 We also believe that these deaths could be avoided if adequately trained personnel, monitoring devices and pediatric intensive care units were available and if best surgical and anesthetic practices were strictly adhered to in our setting.
In this study, there was no difference in the mortality rates between operations performed by resident doctors and consultants. Nevertheless, the fact that most of the fatalities occurred in the hands of resident trainees suggests that there is a need for more supervision to improve the care of patients. Similarly, there is a need for better patient screening to identify those at risk of preventable deaths (neonates, high ASA status III and IV, repeated operative cases, and emergencies). These ones should be anesthetized and operated by consultants when necessary so as to reduce mortality in our hospital.
Our study is limited by the fact that it is based on a single-center study .
In conclusion, POMR remains high in our institution. It is at least 4 to 5 fold higher than reports from some middle-income countries and HICs. The presence of congenital anomalies tends to impact negatively on perioperative outcome compared with acquired diseases in our setting. Availability of antimicrobial agents and postoperative intensive care unit may influence a reduction in POMR in our hospital.